《计算机系统概论》-第3章-习题答案

  1. 试填写在不同情况下,两种MOS管的通、断状态。
    3.1
  2. 试在图中空缺的地方画上“有连线”还是“没有连线”,条件是输入IN等于逻辑“1”时,输出OUT为逻辑“0”。
    3.2 下面连通
  3. 两输入AND门和两输入OR门都是“两输入逻辑”的例子,试问还存在多少种可能的“两输入逻辑”(提示:将2个输入和1个输出的对应关系,而不仅仅是数值,做排列组合。换句话说,就是可能的真值表数目)?
    16种,每样8种
  4. 试在图中空缺的地方画上“有连线”还是“没有连线”,以使得输出C为逻辑“1”。再给出输出C为逻辑“0”的情况下,输入A和B的组合。
    3.4
    输出C为逻辑“0”的情况下,输入A和B的组合:A=1 B=1或A=1 B=0或A=0 B=1
  5. 给出对应于图3-34所示电路的真值表。
    3.5
ABCOUT
1110
1100
1010
0110
1001
0101
0010
0001
  1. 填写对应于图3-35所示电路的真值表,并写出Z以A、B为变量的逻辑表达式。
    3.6
ABCDZ
00110
01100
10010
11001

Z以A、B为变量的逻辑表达式:Z=A AND B
8. 试找出下图中的一个严重错误(提示:匹配不同输入下电路的输出)。
3.8
可能存在上下都是通路的情况。
9. 下面电路对应于逻辑表达式Y=NOT(A AND(B OR C))的实现。请为电路标注对应的输入、输出符号。
3.9
10. 填写对应于逻辑表达式NOT(NOT(A)OR NOT(B))的真值表,它对应的是什么逻辑门?

ABresult
000
010
100
111

对应的逻辑门是:与门
11. 填写两输入非门的真值表。 (此处应该是或非门)

ABA NOR B
001
010
100
110
  1. a. 画出3输入与门和或门的MOS晶体管级电路图。提示:参考图3-6a和图3-7a,对其进行扩展。
    3.12-a1 或门
    3.12-a2 与门
    b. 在问题a的电路图上,对应下列条件,标注电路图中的MOS管的导通(连线)或断开(无连线)。
    (1)A=1,B=0,C=0
    A=1,B=0,C=0
    (2)A=0,B=0,C=0
    A=0,B=0,C=0
    (3)A=1,B=1,C=1
    A=1,B=1,C=1
  2. 参考习题3.11a,画出3输入译码器的MOS级电路图。对应译码器的每一个输出,写出其对应的输入组合。
  3. 试问5输入译码器应该有多少根输出线?
  4. 试问16输入多路开关应该有多少根输出线?应该有多少根选择线?
  5. 如果A和B是4-bit无符号整数0111和1011,试问图3-15所示的全加器计算A与B之和S,并填写下面表格。请用十进制加法验证A和B之和,是否与S吻合?为什么?
  6. 给定下面真值表,请画出对应的逻辑电路(提示:参考3.3.4节的实现算法)。
  7. a. 给定4个输入A、B、C、D,1个输出Z,设计一个真值表,要求其中至少有7种输入组合的逻辑输出为1(另:该真值表共有多少行?)。
    b. 画出以上真值表对应的门级逻辑电路。参考3.3.4节的实现。
  8. 基于与门、或门和非门,实现以下函数。其中,A和B为输入,F为输出。
    a. F为1,当前仅当A=0、B=1。
    b. F为1,当前仅当A=1、B=0。
    c. 基于a和b的答案,实现一个1-bit加法器。该1-bit加法器的真值表如下所示:
    d. 试问,能否使用4个完全相同的1-bit加法器(如c中的加法器)实现一个4-bit加法器?为什么不可以?缺少什么信息?提示:当A和B都为1时,和为0,其中什么信息被丢失了?
  9. 图3-36所示的逻辑电路(一)有3个输入A、B、C,图3-37的逻辑电路(二)有两个输入A、B,两个电路的输出都是D。但两者之间存在本质的区别是什么?提示:当输入A从逻辑0变为逻辑1时,两个电路有什么不同?
  10. 画出下面真值表对应的门级电路图,以及对应的晶体管级电路图,并对照真值表验证晶体管级电路图是否正确。
  11. 我们通常称8-bit为1个字节(byte),4-bit为一个半字节(nibble)。如果一个byte寻址的内存的地址表示宽度是14-bit,试问该内存包含多少nibble?
  12. 试基于“2选1”多路开关实现一个“4选1”多路开关。注意,“4选1”多路开关包含4个输入、2个选择线、1个输出。写出该电路对应的真值表。
  13. 已知图3-38所示的逻辑电路,填写真值表中Z的值。
  14. a. 图3-39所示是在大多数处理器中都用到的逻辑电路,其中每个方框是一个全加器。试问,信号X的作用是什么?或者说,X=0和X=1,电路输出有什么不同?
    b. 试设计一个加/减法器。电路能根据X,选择是执行A+B或是A-B。提示:参考图3-39,并在其基础上实现。
  15. 通常,逻辑结构的执行速度取决于输入和输出端之间的“门”数目。假设AND、OR和NOT门的传输延迟都是一个“门延迟”时间单位。例如,我们说图3-11所示译码器的输入和输出之间延迟时间都是2(经过两个逻辑门)。试问:
    a. 如图3-12,两输入多路开关的传输时延是多少?
    b. 如图3-15,1-bit全加器的传输时延是多少?
    c. 如图3-16,4-bit全加器的传输时延是多少?
    d. 假设将4-bit全加器扩展到32位,传输时延又是多少?
  16. 之前介绍过,加法器是由多个独立单bit加法单元(slice)组成的。每个加法单元将A和B两个bit相加,并生成进位(carryin bit)和累加和位(sum bit),我们称之为“全加器”(full adder)。假设我们有1个3-8译码器和2个6输入OR门(如下图所示)。试问,能否基于这3个逻辑单元构建出一个全加器?如果可以,请实现(提示:如果OR门任一输入空缺,可以将其置为输入0,以免产生副作用)。
  17. 看图答题:
    a. 选择线S=0时,电路输出是多少?或者说,不同的输入A对应的输出Z是多少?
    b. 如果将选择线S从0变为1,输出有什么变化?
    c. 该逻辑电路是一个存储单元吗?
  18. 假设已有二进制加法器,如果准备设计一个2-bit乘法器。乘法器输入分别是A[1:0]和B[1:0],输出是Y(A[1:0]和B[1:0]相乘的结果),表示为:Y=A[1:0]xB[1:0]
    a. A[1:0]所能表示的最大值是多少?
    b. B[1:0]所能表示的最大值是多少?
    c. Y最大的可能值是多少?
    d. 表示Y至少需要多少bit宽度?
    e. 画出乘法运算的真值表(4个输入:A[1]、A[0]、B[1]、B[0])。
    f. 对照真值表,给出输出Y[2]的逻辑实现(只允许使用与、或非门)。
  19. 假设一个16-bit寄存器原先保存了一个值。如果再向该寄存器写入数值x75A2,试问还能恢复出原先的寄存器内容吗?
  20. 如图3-40和图3-41所示,比较器(comparator)有两个1-bit的输入A和B,3个1-bit输出G(大于)、E(等于)、L(小于)。如果A>B,则G=1;如果A=B,则E=1;如果A<B,则L=1。
    a. 画出该1-bit比较器对应的真值表。
    b. 设计G、E和L的逻辑实现(使用与、或和非门)。
    c. 基于1-bit比较器,构建一个4-bit比较器(只判断是否相等)。即如果A[3:0]=B[3:0],则EQUAL输出1。
  21. 如果计算机的寻址能力是8字节,并且需要3-bit访问内存位置,试问该计算机内存的大小是多少(以字节为单位)?
  22. 试解释内存地址(memory address)和内存寻址能力(addressability)之间的区别。
  23. 看图3-21中的22x3-bit内存结构,回答下列问题:
    a. 如果读取第4个内存位置(location),则A[1:0]和WE的值分别是多少?
    b. 如果将内存单元(entry)数目从4个扩展到60个,问总共需要多少根地址线?扩展之后,内存寻址能力是否发生变化?
    c. 如果程序计数器它是CPU中一个特殊的专用寄存器,下一章中将详细介绍它的宽度不小于寻址60个内存位置所需要的地址位数。试问,在不增加程序计数器宽度的情况下,内存还能扩容多少个位置?
  24. 试问,如图3-42所示的内存:
    a. 地址空间是多大?
    b. 寻址能力是多少?
    c. 地址为2的单元内容是什么?
  25. 假设内存是22-bit寻址,且寻址能力为3-bit。试问该内存的总bit容量?
  26. 已知一个两输入组合逻辑。在过去的10个周期内,两个输入的值分别是01、10、01、10、11、01、10、11、01。而当前周期中,两个输入值为10。请问之前10个周期的输入值对当前输出是否有影响?
  27. 在3.6.2节中,图3-24a所示的密码锁有4个状态:A、B、C、D。即“开锁(D)”、“闭锁且无输入(A)”、“闭锁且已输入1个正确数字(B)”、“闭锁且已输入2个正确数字(C)”。这些是密码锁可能出现的所有状态。试问:是否存在第5种状态?
  28. 在3.6.2节的描述中。是否存在状态“TEXAS:OKLAHOMA=30:28”到状态“比分相同”的状态转移?如果存在,试给出两种状态的计分牌内容(参考图3-25)。
  29. 在3.6.2节描述的篮球比赛中。试问,假设存在两个状态,TEXAS领先“30:28”和平局“30:30”,两者之间是否可能存在转移关系?如果存在这种可能,试画出计分牌予以解释。并标识当时对应的三种可能输出:比赛进行中、得克萨斯队获胜、俄克拉荷马队获胜。
  30. 试画出3.6.2节描述的“三个连珠游戏”的有限状态机。
  31. 在IEEE(美国电气和电子工程师学会)办公楼内,一瓶汽水卖35美分。为方便售货,安装了一个自动售货机。自动售货机内部有一个控制器。自动售货机只接受3种硬币输入:5美分、10美分和25美分硬币。每次用户每投入一枚硬币,就按一下按钮(表示已输入)。如果投入硬币的面值总和不小于35美分,则自动售货机输出一瓶汽水并且找零。请画出该自动售货机的有限状态机,其中每一个状态表示已投入硬币的总额(提示:共有7种状态)。一旦用户投入硬币的总额大于35美分,自动售货机就转移到最后状态,即“输出汽水并找零”(提示:有5种这样的最后状态)。如果已处于最后状态,继续投币将重新开始。
  32. 参考图3-32b。请解释,为什么1号和2号灯会受控于标识为Z的OR门?为什么第2个存储单元的下一个状态受控于标识为U的OR门?
  33. 如图3-43所示,有限状态机的输入是X、输出为Z。
    请基于图3-43,回答以下问题:
    a. 填写下面的状态转移表。其中:S0、S1代表当前状态,D1、D0代表下一状态。
    b. 画出与状态转移表相对应的状态转移图。
  34. 试证明逻辑门NAND基于自身是逻辑完备的(参考3.3.5节)。换句话说,仅仅使用NAND逻辑就可以实现AND、NOT和OR等逻辑功能。

参考:https://github.com/QSCTech/zju-icicles/blob/master/计算机系统概论/作业答案/ch03_complete.pdf

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值