BZOJ 2708 [Violet 1]木偶 DP

题意:链接

方法: DP

解析:

这题太神辣。

做梦都没想到DP啊,反正我不会。


先谈一个我有过的错的想法。

最小费用最大流?

能匹配的边连费用为1的,不能匹配的连费用为0的

跑最小费用最大流

然而这显然是错的,我还思考半天。

因为这道题强制如果还用费用为1的边,那必须先跑费用为1的边。

这样就不符合辣

至于自己改下这个写法?

尝试过- -,然而卡在哪里呢?

一堆费用为1的边你先跑那个呢?- -评估?评估函数怎么写啊,我不会啊。

所以这个写法显然弃疗。


然而我还曾有过一个想法。

贪心?

对于每一个值pi来说,我们统计一下Num,然后呢

我们来考虑拿最大的Num,最大的Num怎么拿呢?

让他没有匹配的对象,或是尽可能的使他能匹配的对象都跟别人匹配,然后Num-他还能匹配的对象就是这一轮操作的答案。

每匹配一次更新一遍,直到Num都为0

不过这正确性有点可怜…

总感觉是错的。

好像上一个方法的错误部分就能卡住这个?

应该吧,反正我没实现。

但总感觉贪心有路子,但是我不会啊。


正解

正解好神而且好简洁啊。

排一下序

然后设f[i]为前i个最多扔多少个。

f[i]=max(f[j],cal(j+1,i))

这个cal是什么呢

我们枚举能扔多少个。

然后验证,

并且验证的时候是按照什么样子匹配呢?

这里写图片描述

有序之后就这么匹配就行辣

正确性?不会证明啊,应该看起来是对的

复杂度?n这么小谈什么复杂度。


15.10.27 Update:
对于样例 1 2 3 3 4 5的解释。
如果按照上述分段的思想。
可能会这样匹配
1 2 3 3 4 5
2 3 1 4 5 3
这样的话,木偶会剩下 3 5,而提线剩下1 3,还可以继续匹配。
并不符合上述解法。
其实只在于一个点上-》就是不同的段上的匹配方式是互逆的。
1 2 3
2 3 1 按照这种方式。
3 4 5
5 3 4 只要是上一段的逆序匹配即可,就不会出现矛盾的情况。

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 55
using namespace std;
int f[N];
int a[N];
int n;
int cal(int x,int y)
{
    for(int k=1;k<=y-x+1;k++)
    {
        for(int j=x;j<=y-k;j++)
            if(abs(a[j]-a[j+k])>1)return k-1;
        if(abs(a[x+k-1]-a[y-k+1])<=1)return k-1;
    }
    return y-x+1;
}
int main()
{
    while(~scanf("%d",&n))
    {
        memset(f,0,sizeof(f));
        for(int i=1;i<=n;i++)scanf("%d",&a[i]);
        sort(a+1,a+n+1);
        for(int i=1;i<=n;i++)
            for(int j=0;j<i;j++)
                f[i]=max(f[i],f[j]+cal(j+1,i));
        printf("%d\n",f[n]);
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值