Sample Input
1
2
1
54
2
8 9
3
1 2 3
2
56 60
3
59 59 57
3
51 55 59
5
1 2 3 2 4
4
87 70 81 34
4
50 55 58 59
6
1 2 3 4 5 6
6
1 2 3 3 4 5
8
1 2 3 3 4 2 5 4
9
22 23 52 61 39 38 1 40 17
Sample Output
0
0
0
1
0
0
0
1
0
0
2
2
2
1
先排序
假如将木偶和提线分别对应放为两列,配对的相连。那么最优的答案应该是形如:
f[i]
表示前
i
对,最多能丢弃的个数。
Cal过程枚举一条线跨越区间长度,然后检验。
过程看看代码意会一下。。
【代码】
#include <iostream>
#include <cstdio>
#include <algorithm>
#define N 1000005
#define mod 1000000
#define INF 1e9
using namespace std;
typedef long long ll;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
int n;
int f[N],a[N];
int Cal(int x,int y)
{
for(int k=1;k<=y-x+1;k++)
{
if(abs(a[x+k-1]-a[y-k+1])<=1) return k-1;
for(int i=k;i<=y-x;i++)
if(abs(a[i+x]-a[i+x-k])>1) return k-1;
}
return y-x+1;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=1;i<=n;i++) a[i]=read(),f[i]=0;
sort(a+1,a+1+n);
for(int i=1;i<=n;i++)
for(int j=0;j<i;j++) f[i]=max(f[i],f[j]+Cal(j+1,i));
printf("%d\n",f[n]);
}
return 0;
}