VirtualBox下Linux虚机扩容

        节后上班第一天,按计划着手搭建hadoop和hive实验环境,还没开始安装就碰到一个坎,JDK安装包解包时报空间不足。原来的四个虚机,每个分配了8G,其中根文件系统6G,做完Fabric实验后空间所剩无几,因此需要扩容。下面记录的就是实际操作步骤。

环境:
VirtualBox 5.0.10、CentOS release 6.4

1. 使用下面的命令查看虚拟机的UUID
VBoxManage list hdds
结果如图1所示:


图1


2. 使用下面的命令将给虚拟机分配磁盘空间扩充至20G
VBoxManage modifyhd 640f7f92-7c0e-4f39-9567-9ea0c0b399ac --resize 20480
执行完后虚机的存储信息如图2所示:


图2


3. 查看当前操作系统的空间情况
df -h
结果如图3所示:


图3

可以看到根文件系统的6G空间使用率已经100%。

fdisk -l
结果如图4所示:


图4

可以看到:
(1)Linux就一块虚拟的物理盘/dev/sda,扩容后该盘的空间20G。
(2)该盘已有两个物理分区/dev/sda1和/dev/sda2。
(3)/dev/sda1 485M,用作boot分区。
(4)/dev/sda2 7.5G,分成两个逻辑卷,一个用作根6G,一个用作交换1.5G。
下面要做的就是将/dev/sda上未分配的磁盘空间分区,并添加到根分区所属的逻辑卷上。

4. 将/dev/sda上未分配的磁盘空间分区
fdisk /dev/sda
n
p
3
w

5. 重启Linux
reboot

6. 将新建的分区格式化,建立文件系统
mkfs.ext4 /dev/sda3
结果如图5所示:


图5


7. 创建物理卷
pvcreate /dev/sda3
执行完后查看物理卷
pvdisplay
结果如图6所示:


图6

可以看到新增了一个12G的物理卷

8. 查看卷组
vgdisplay
结果如图7所示:


图7

可以看到只有一个名为vg_fab1的卷组,当前大小为7.51G

9. 扩展卷组
vgextend vg_fab1 /dev/sda3

10. 查看逻辑卷
lvdisplay
结果如图8所示:


图8

可以看到用作根的逻辑卷路径为/dev/vg_fab1/lv_root

11. 扩展逻辑卷
lvextend -L 18G -n /dev/vg_fab1/lv_root

12. 调整根逻辑卷大小
resize2fs /dev/vg_fab1/lv_root

13. 再次查看当前操作系统的空间情况
df -h
结果如图9所示:


图9

可以看到根文件系统已经有18G空间。
  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值