计算机科学和机器学习中的代数学、拓扑学、微积分以及最优化理论

第一章


群、环、域

  在接下来的四章中,我们将介绍最基本的四种代数结构(群、环、域以及向量空间),其中着重介绍的是向量空间。同时呢,也会对线性代数的基本概念进行介绍,其中包括向量空间、子空间、线性组合、线性无关、基、商空间、线性映射、矩阵、基变换、直和、线性形式、对偶空间、超平面、线性变换等。

  我们首先引入笛卡尔积的概念:假设我们有集合 A = { a 1 , a 2 , a 3 } , B = { b 1 , b 2 , b 3 } A=\{a_1,a_2,a_3\},B=\{b_1,b_2,b_3\} A={a1,a2,a3},B={b1,b2,b3},那么 A A A B B B 的笛卡尔积记作 A ∘ B A \circ B AB,计算结果为有序数对,即 A ∘ B = { ( a , b ) ∣ a ∈ A , b ∈ B } A \circ B=\{(a,b)|a \in A,b \in B\} AB={(a,b)aA,bB} 。不难发现当 A , B A,B A,B 的元素均为实数时,笛卡尔积表示平面直角坐标系。当然我们也可以定义某一种具体的运算方式,例如 A + B A+B A+B (除此之外,我们还可以定义 “ − - ” 以及 “ × \times ×” 运算),此时 A + B = { a + b ∣ a ∈ A , b ∈ B } A+B=\{a+b|a \in A,b \in B\} A+B={a+baA,bB}。当然,集合的元素不仅仅局限在实数范围内,更一般的,我们可以用字符串作为其元素,例如: A = { 东 , 西 } , B = { 南 , 北 } A=\{东,西\},B=\{南,北\} A={西}B={} 那么 A ∘ B = { ( 东 , 南 ) , ( 东 , 北 ) , ( 西 , 南 ) , ( 西 , 北 ) } A \circ B = \{(东,南),(东,北),(西,南),(西,北)\} AB={()()(西)(西)}。那么经过笛卡尔积的运结果包含多少个元素呢?不难发现,当被作用的集合均为有限集时,最终计算结果的元素个数就是各个集合元素个数的乘积。

1.1 群、子群、陪集

  实数组成的集合 R R R有两种运算操作:加法+: R + R → R R + R \rightarrow R R+RR ,以及乘法 × \times × R × R → R R \times R \rightarrow R R×RR,实数集之间的加法和乘法运算本质上是一个阿贝尔群。接下来我们回忆一下群的定义。
定义1.1: 两个集合 G G G通过二元运算符操作 ⋅ \cdot 便可得到一个群(注:这里的 ⋅ \cdot 可取 × \times × 或 +,下同),例如: G × G → G G \times G \rightarrow G G×GG (当且仅当三个 G G G 都相同的情况下才叫二元运算,且本章仅对二元运算进行讨论),该运算操作可以将集合中的每一组元素 a , b ∈ G a,b\in G a,bG进行有效的结合,从而得到 a ⋅ b ∈ G a\cdot b\in G abG。我们先对一些计算的结果是否为二元运算进行讨论:

1、我们有 Z ⋅ Z → Z Z \cdot Z \rightarrow Z ZZZ,其中 Z Z Z 表示整数集

(1)、当 ⋅ \cdot 表示 + 时,是二元运算;

(2)、当 ⋅ \cdot 表示 - 时,是二元运算;

(3)、当 ⋅ \cdot 表示 × \times × 时,是二元运算;

(4)、当 ⋅ \cdot 表示 ÷ \div ÷ 时,不是二元运算,因为分母不能为0。

2、我们有 Z ⋅ Z → Z Z \cdot Z \rightarrow Z ZZZ,其中 Z = Z − { 0 } Z=Z-\{0\} Z=Z{0} 表示非零整数集

(1)、当 ⋅ \cdot 表示 + 时,不是二元运算,因为相反数的和为0;

(2)、当 ⋅ \cdot 表示 - 时,不是二元运算,因为相同数的差为0;

(3)、当 ⋅ \cdot 表示 × \times × 时,是二元运算;

(4)、当 ⋅ \cdot 表示 ÷ \div ÷ 时,不是二元运算,因为除法计算结果不一定为整数。

3、我们有 R + ⋅ R + → R + R^+ \cdot R^+ \rightarrow R^+ R+R+R+,其中 R + R^+ R+ 表示正实数集

(1)、当 ⋅ \cdot 表示 + 时,是二元运算;

(2)、当 ⋅ \cdot 表示 - 时,不是二元运算,因为计算结果可能为0或者负数;

(3)、当 ⋅ \cdot 表示 × \times × 时,是二元运算;

(4)、当 ⋅ \cdot 表示 ÷ \div ÷ 时,是二元运算。

4、我们有 Q ⋅ Q → Q Q \cdot Q \rightarrow Q QQQ,其中 Q = Q − { 0 } Q=Q-\{0\} Q=Q{0} 表示非零有理数集

(1)、当 ⋅ \cdot 表示 + 时,不是二元运算,因为相反数的和为0;

(2)、当 ⋅ \cdot 表示 - 时,不是二元运算,因为相同数的差为0;

(3)、当 ⋅ \cdot 表示 × \times × 时,是二元运算;

(4)、当 ⋅ \cdot 表示 ÷ \div ÷ 时,是二元运算。

5、我们有 V ⋅ V → V V \cdot V \rightarrow V VVV,其中 V V V 表示元素为实数的向量,即 V = { a i ∣ a i ∈ R } V=\{a_i|a_i \in R\} V={aiaiR},由于向量加法的运算方式为: { a 1 , a 2 , a 3 } + { b 1 , b 2 , b 3 } = { a 1 + b 1 , a 2 + b 2 , a 3 + b 3 } \{a_1,a_2,a_3\}+\{b_1,b_2,b_3\}=\{a_1+b_1,a_2+b_2,a_3+b_3\} {a1,a2,a3}+{b1,b2,b3}={a1+b1,a2+b2,a3+b3},即对应位置相加,不难发现其计算结果的元素仍然为实数,所以该运算过程为二元运算。

6、我们有 M n ⋅ M n → M n M_n \cdot M_n \rightarrow M_n MnMnMn,其中 M n M_n Mn 表示实数组成的 n n n 阶方阵,不难发现 n n n 阶实数方阵相加的结果仍为 n n n 阶实数方阵, n n n 阶实数方阵相减的结果仍为 n n n 阶实数方阵, n n n 阶实数方阵相乘的结果仍为 n n n 阶实数方阵,所以上述运算均为二元运算。

  我们通常将二元运算称为 ⋅ \cdot 运算在 A A A 上封闭。那么如果 A A A 是有限集如何判断封闭性呢?其实只需要判断是否满足下图即可:

在这里插入图片描述

图1.1 判断有限集是否封闭

第一行表示集合 A A A,第一列也表示集合 A A A,剩余部分表示二元运算结果,可见运算结果和集合包含的元素是一致的。所以,判断是否封闭,我们只需要判断每一部分元素是否均相同即可。

  群具有四个性质:封闭性、结合律、单位元素、逆元素。我们定义 a , b , c a,b,c a,b,c为数组 G G G中的元素,即 a , b , c ∈ G a,b,c\in G a,b,cG e e e为数组的 G G G的单位元素,即 e ∈ G e\in G eG,数组 G G G中的每一个元素均可逆,那么有下述等式恒成立:

(等式1:结合律) a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c a \cdot(b \cdot c)=(a \cdot b) \cdot c a(bc)=(ab)c
(等式2:单位元) a ⋅ e = e ⋅ a = a a \cdot e=e \cdot a=a ae=ea=a
(等式3:逆元素)对于集合 G G G中的每一个元素 a a a a ∈ G a \in G aG,都有 a − 1 ∈ G a^{-1} \in G a1G,满足 a ⋅ a − 1 = a − 1 ⋅ a = e a \cdot a^{-1}=a^{-1} \cdot a=e aa1=a1a=e
  对于群 G G G中任意的两个元素 a , b a,b a,b,即 a , b ∈ G a,b \in G a,bG,若 a ⋅ b = b ⋅ a a \cdot b=b \cdot a ab=ba,那么我们称群 G G G是可交换的。
  两个实数集 M M M使用二元运算符 ⋅ \cdot 进行运算: M × M → M M \times M \rightarrow M M×MM,若元素 e e e仅仅满足结合律和单位元,那么我们将其称作独异点。例如,两个由自然数组成的集合 N = { 0 , 1 , ⋯   , n , ⋯   } N=\{0,1,\cdots,n,\cdots \} N={0,1,,n,} 进行加法运算,构成可交换独异点,但由于其不满足等式3,所以不能被称为群。我们接下来给出几个群的例子供大家学习。

示例1.1:
  1. 将两个数组 Z = { ⋯   , − n , ⋯   , − 1 , 0 , 1 , ⋯   , n , ⋯   } Z=\{\cdots,-n,\cdots,-1,0,1,\cdots,n,\cdots\} Z={,n,,1,0,1,,n,} 进行相加便构成一个单位元为0的阿贝尔群。但是两个 Z ∗ Z^* Z 进行相乘并不能得到群,其中 Z ∗ = Z − { 0 } Z^*=Z-\{0\} Z=Z{0} 。分析过程如下:
(1) 相加
  a、封闭性: ∀ a , b ∈ Z \forall a,b \in Z a,bZ,我们都有 a + b ∈ Z a+b \in Z a+bZ,所以满足封闭性。
  b、结合律: ∀ a , b , c ∈ Z \forall a,b,c \in Z a,b,cZ,我们都有 ( a + b ) + c = a + ( b + c ) (a+b)+c=a+(b+c) (a+b)+c=a+(b+c),所以满足结合律。
  c、单位元: ∀ a ∈ Z \forall a \in Z aZ,我们都有 a + 0 = 0 + a = a a+0=0+a=a a+0=0+a=a,所以满足单位元。
  d、逆元素: ∀ a ∈ Z \forall a \in Z aZ,我们都有 a + b = 0 a+b=0 a+b=0,且 b ∈ Z b \in Z bZ,所以满足逆元素。
  e、交换律: ∀ a , b ∈ Z \forall a,b \in Z a,bZ,我们都有 a + b = b + a a+b=b+a a+b=b+a,所以满足交换律。
  综上, Z Z Z 是单位元为0的阿贝尔群。
(2) 相乘
  a、封闭性: ∀ a , b ∈ Z ∗ \forall a,b \in Z^* a,bZ,我们都有 a × b ∈ Z ∗ a \times b \in Z^* a×bZ,所以满足封闭性。
  b、结合律: ∀ a , b , c ∈ Z ∗ \forall a,b,c \in Z^* a,b,cZ,我们都有 ( a × b ) × c = a × ( b × c ) (a \times b) \times c=a \times (b \times c) (a×b)×c=a×(b×c),所以满足结合律。
  c、单位元: ∀ a ∈ Z ∗ \forall a \in Z^* aZ,我们都有 a × 1 = 1 × a = a a \times 1=1 \times a=a a×1=1×a=a,所以满足单位元。
  d、逆元素: ∀ a ∈ Z ∗ \forall a \in Z^* aZ,我们不一定有 b × a = 1 , b ∈ Z b \times a=1,b \in Z b×a=1,bZ,所以不满足逆元素。
  综上, Z Z Z 不是群,仅为独异点。需要注意的是 Z , Z ∗ Z,Z^* Z,Z 的元素均为无限的。

  2. 通过将两个有理数组成的集合 Q Q Q(集合中的元素均可写为 p / q p/q p/q 的形式,其中 p , q ∈ Z p,q\in Z p,qZ q ≠ 0 q\neq0 q=0)进行相加,可以得到一个单位元为0的阿贝尔群。将两个集合 Q ∗ Q^* Q 进行相乘也可得到一个单位元为1的阿贝尔群,其中 Q ∗ = Q − { 0 } Q^*=Q-\{0\} Q=Q{0}。分析过程如下:
(1) 相加
  a、封闭性: ∀ a , b ∈ Q \forall a,b \in Q a,bQ,我们都有 a + b ∈ Q a+b \in Q a+bQ,所以满足封闭性。
  b、结合律: ∀ a , b , c ∈ Q \forall a,b,c \in Q a,b,cQ,我们都有 ( a + b ) + c = a + ( b + c ) (a+b)+c=a+(b+c) (a+b)+c=a+(b+c),所以满足结合律。
  c、单位元: ∀ a ∈ Q \forall a \in Q aQ,我们都有 a + 0 = 0 + a = a a+0=0+a=a a+0=0+a=a,所以满足单位元。
  d、逆元素: ∀ a ∈ Q \forall a \in Q aQ,我们都有 a + b = 0 , b ∈ Q a+b=0,b \in Q a+b=0,bQ,所以满足逆元素。
  e、交换律: a , b ∈ Q a,b \in Q a,bQ,我们都有 a + b = b + a a+b=b+a a+b=b+a,所以满足交换律。
  综上, Q Q Q 是单位元为0的阿贝尔群。
(2) 相乘
  a、封闭性: ∀ a , b ∈ Q ∗ \forall a,b \in Q^* a,bQ,我们都有 a × b ∈ Q ∗ a \times b \in Q^* a×bQ,所以满足封闭性。
  b、结合律: ∀ a , b , c ∈ Q ∗ \forall a,b,c \in Q^* a,b,cQ,我们都有 ( a × b ) × c = a × ( b × c ) (a \times b) \times c=a \times (b \times c) (a×b)×c=a×(b×c),所以满足结合律。
  c、单位元: ∀ a ∈ Q ∗ \forall a \in Q^* aQ,我们都有 a × 1 = 1 × a = a a \times 1=1 \times a=a a×1=1×a=a,所以满足单位元。
  d、逆元素: ∀ a ∈ Q ∗ \forall a \in Q^* aQ,我们都有 a × b = 1 , b ∈ Q ∗ a \times b=1,b \in Q^* a×b=1,bQ,所以满足逆元素。
  e、交换律: a , b ∈ Q ∗ a,b \in Q^* a,bQ,我们都有 a × b = b × a a \times b=b \times a a×b=b×a,所以满足交换律。
  综上, Q ∗ Q^* Q 是单位元为1的阿贝尔群。需要注意的是 Q , Q ∗ Q,Q^* Q,Q 的元素均为无限的。
  我们发现上述的群都满足交换律,那么有没有不满足交换律的群呢?我们在这里给出一个例子加以说明。 M + M^+ M+ n × n n \times n n×n 的可逆方阵(行列式不为0,且元素均为实数),那么 M + × M + M^+ \times M^+ M+×M+ 是不是群呢?分析过程如下:
  a、封闭性:我们取 ∀ A , B ∈ M + \forall A,B \in M^+ A,BM+,都有 A × B ∈ M + A \times B \in M^+ A×BM+,所以满足封闭性。
  b、结合律: ∀ A , B , C ∈ M + \forall A,B,C \in M^+ A,B,CM+,都有 ( A × B ) × C = A × ( B × C ) (A \times B) \times C=A \times (B \times C) (A×B)×C=A×(B×C),所以满足结合律(矩阵乘法满足结合律)。
  c、单位元: ∀ A ∈ M + \forall A \in M^+ AM+,都有 A × I n = I n × A = A A \times I_n = I_n \times A=A A×In=In×A=A,所以满足单位元,其中 I n I_n In n n n 阶单位阵。
  d、逆元素: ∀ A ∈ M + \forall A \in M^+ AM+,都有 A × B = I n A \times B=I_n A×B=In,其中 B = A − 1 B=A^{-1} B=A1,所以满足逆元素。
  e、交换律: ∀ A , B ∈ M + \forall A,B \in M^+ A,BM+,一般而言 A × B ≠ B × A A \times B \neq B \times A A×B=B×A,所以不满足交换律。
  综上, M + M^+ M+ 是一个单位元为 I n I_n In 的群。

  3. 给定一个非空集合 S S S,若有作用方式 f f f 可以使两个相同集合 S S S 之间满足双射关系(也可称为 S S S 的排列),即 f : S → S f:S\rightarrow S f:SS,此时,通过函数与函数之间的运算便可构成一个群(例如,将函数 f f f 和函数 g g g 通过复合运算得到计算结果 f ∘ g f \circ g fg,其中 f f f g g g 均可使集合 S S S 到其自身之间满足一一映射),当集合 S S S 中的元素个数超过两个时,所构成的群并不是一个阿贝尔群。集合 S = { 1 , ⋯   , n } S=\{1,\cdots,n\} S={1,,n} 所构成的置换群通常被记作 S n S_n Sn,也被称为 n n n 个元素构成的对称群。举例如下:
S = { 1 , 2 , 3 } S=\{1, 2, 3\} S={1,2,3},我们定义 f f f 的映射关系为:
f : S → S , f = { ( 1 , 2 ) , ( 2 , 3 ) , ( 3 , 1 ) } f − 1 : S → S , f − 1 = { ( 1 , 3 ) , ( 2 , 1 ) , ( 3 , 2 ) } f:S\rightarrow S,f=\{(1,2),(2,3),(3,1)\} \\ f^{-1}:S\rightarrow S,f^{-1}=\{(1,3),(2,1),(3,2)\} f:SS,f={(1,2),(2,3),(3,1)}f1:SS,f1={(1,3),(2,1),(3,2)}
同时定义 g g g 的映射关系为:
g : S → S , g = { ( 1 , 3 ) , ( 2 , 1 ) , ( 3 , 2 ) } g − 1 : S → S , g − 1 = { ( 1 , 2 ) , ( 2 , 3 ) , ( 3 , 1 ) } g:S\rightarrow S,g=\{(1,3),(2,1),(3,2)\} \\ g^{-1}:S\rightarrow S,g^{-1}=\{(1,2),(2,3),(3,1)\} g:SS,g={(1,3),(2,1),(3,2)}g1:SS,g1={(1,2),(2,3),(3,1)}
则,我们有 f ∘ g f \circ g fg 的计算结果:
f ∘ g : S → S , f ∘ g = { ( 1 , 1 ) , ( 2 , 2 ) , ( 3 , 3 ) } f \circ g:S\rightarrow S,f \circ g=\{(1,1),(2,2),(3,3)\} fg:SS,fg={(1,1),(2,2),(3,3)}
可知, f ∘ g f \circ g fg 的复合结果依然为满射,且其逆过程为:
( f ∘ g ) − 1 : S → S , ( f ∘ g ) − 1 = { ( 1 , 1 ) , ( 2 , 2 ) , ( 3 , 3 ) } (f \circ g)^{-1}:S\rightarrow S,(f \circ g)^{-1}=\{(1,1),(2,2),(3,3)\} (fg)1:SS,(fg)1={(1,1),(2,2),(3,3)}
接下来我们利用群的相关定义进行验证:
结 合 律 : 1 × ( 2 × 3 ) = ( 1 × 2 ) × 3 单 位 元 : 2 × 1 = 1 × 2 = 2 逆 映 射 : 对 于 每 一 个 a ∈ S , 均 有 f ∘ g 以 及 ( f ∘ g ) − 1 的 对 应 法 则 , 使 得 对 应 元 素 b 满 足 b ∈ S 故 而 f ∘ g 的 复 合 结 果 为 群 , 且 为 对 称 群 结合律:1 \times (2 \times 3) = (1 \times 2) \times 3\\ 单位元:2 \times 1 = 1 \times 2 = 2\\ 逆映射:对于每一个a \in S,均有 f \circ g 以及 (f \circ g)^{-1}的对应法则,使得对应元素b满足 b \in S\\ 故而 f \circ g 的复合结果为群,且为对称群 1×(2×3)=(1×2)×32×1=1×2=2aSfg(fg)1使bbSfg
  4. 对于任意的正整数 p ∈ N p \in N pN,定义在 Z Z Z 上的同余关系记作 m ≡ n   ( m o d   p ) m \equiv n \ (mod\ p) mn (mod p),具体定义如下:
m ≡ n   ( m o d   p )   ⇔   m − n = k p   , 存 在 k ∈ Z m \equiv n \ (mod\ p) \ \Leftrightarrow \ m-n=kp \ ,存在k \in Z mn (mod p)  mn=kp ,kZ
其中, ≡ \equiv 表示同余符号,即 m   m o d   p ≡ n   m o d   p m \ mod \ p \equiv n \ mod \ p m mod pn mod p ,读者很容易证明这是一个恒等关系,此外,将同余号两边同时进行相加或相乘,相等关系不变,即若 m 1 ≡ n 1   ( m o d   p ) m_1 \equiv n_1 \ (mod\ p) m1n1 (mod p) m 2 ≡ n 2   ( m o d   p ) m_2 \equiv n_2 \ (mod\ p) m2n2 (mod p) ,则 m 1 + m 2 ≡ n 1 + n 2   ( m o d   p ) m_1+m_2 \equiv n_1+n_2 \ (mod\ p) m1+m2n1+n2 (mod p) m 1 m 2 ≡ n 1 n 2   ( m o d   p ) m_1m_2 \equiv n_1n_2 \ (mod\ p) m1m2n1n2 (mod p) 。我们在这里给出一个算例:
5 ≡ 3   ( m o d   2 ) 11 ≡ 7   ( m o d   2 ) ⇒ 加 运 算 : 16 ≡ 10   ( m o d   2 ) ⇒ 乘 运 算 : 55 ≡ 21   ( m o d   2 ) 5 \equiv 3 \ (mod \ 2)\\ 11 \equiv 7 \ (mod \ 2)\\ \Rightarrow 加运算:16 \equiv 10 \ (mod \ 2)\\\Rightarrow 乘运算:55 \equiv 21 \ (mod \ 2) 53 (mod 2)117 (mod 2)1610 (mod 2)5521 (mod 2)
我们将一组等价类对 p p p 取余的相加和相乘操作用如下记号进行表示:
[ m ] + [ n ] = [ m + n ] [ m ] ⋅ [ n ] = [ m n ] [m]+[n]=[m+n]\\ [m] \cdot [n]=[mn] [m]+[n]=[m+n][m][n]=[mn]
读者很容易证明将一组对 p p p 取余的同余类进行相加可以得到单位元为0的阿贝尔群,我们将这个群记作 Z / p Z Z/pZ Z/pZ 。我们继续利用上例进行分析:
加运算得到的结果为: { 0 , 0 } \{0,0\} {0,0},该集合同时满足结合律、单位元为0、逆元素
乘运算得到的结果为: { 1 , 1 } \{1,1\} {1,1},该集合同时满足结合律、单位元为1、逆元素
  5. 将一组系数为实数或复数的 n × n n \times n n×n 的可逆矩阵进行相乘可以得到一个单位元为单位矩阵 I n I_n In 的群,这个群被称为一般线性群,对于系数为实数的记作 G L ( n , R ) GL(n,R) GL(n,R) 对于系数为复数的记作 G L ( n , C ) GL(n,C) GL(n,C) 。假设我们有可逆矩阵 A , B A,B A,B 以及实数 λ , β \lambda,\beta λ,β,则有如下计算过程:
结 合 律 : ( λ A × β ) B = λ ( A × β B ) 单 位 元 : λ A × β B × I = I × λ A × β B = λ A × β B 逆 元 素 : ( λ A × β B ) − 1 × ( λ A × β B ) = I 结合律:(\lambda A \times \beta )B = \lambda (A \times \beta B)\\ 单位元:\lambda A \times \beta B \times I = I \times \lambda A \times \beta B = \lambda A \times \beta B\\ 逆元素:(\lambda A \times \beta B)^{-1} \times (\lambda A \times \beta B) = I (λA×β)B=λ(A×βB)λA×βB×I=I×λA×βB=λA×βB(λA×βB)1×(λA×βB)=I
注: ∵ \because 矩阵可逆的充要条件之一是它的行列式不等于0, ∴ \therefore 两个可逆矩阵相乘得到矩阵仍然是可逆矩阵。
  6. 将一组系数为实数或复数的 n × n n \times n n×n 的可逆矩阵 A A A 进行相乘,其中矩阵的行列式为1,即 d e t ( A ) = 1 det(A)=1 det(A)=1 ,可以得到一个单位元为单位矩阵 I n I_n In 的群,这个群被称为特殊线性群,对于系数为实数的记作 S L ( n , R ) SL(n,R) SL(n,R) 对于系数为复数的记作 S L ( n , C ) SL(n,C) SL(n,C) 。证明方式如5。
  7. 将一组系数为实数的 n × n n \times n n×n 的矩阵 Q Q Q 进行相乘,可以得到一个单位元为单位矩阵 I n I_n In 的群,其中矩阵 Q Q Q 满足 Q Q T = Q T Q = I n QQ^T=Q^TQ=I_n QQT=QTQ=In 。我们有 Q − 1 = Q T Q^{-1}=Q^T Q1=QT ,这个群被称为正交群,记作 O ( n ) O(n) O(n)
  8. 将一组系数为实数的 n × n n \times n n×n 的矩阵 Q Q Q 进行相乘,可以得到一个单位元为单位矩阵 I n I_n In 的群,其中矩阵 Q Q Q 满足 Q Q T = Q T Q = I n   且   d e t ( Q ) = 1 QQ^T=Q^TQ=I_n \ 且 \ det(Q)=1 QQT=QTQ=In  det(Q)=1 。就像示例7中一样,我们有 Q − 1 = Q T Q^{-1}=Q^T Q1=QT ,这个群被称为特殊正交群或旋转群,记作 S O ( n ) SO(n) SO(n)
  在示例5~8中,除了 S O ( 2 ) SO(2) SO(2) 为阿贝尔群以外, 当 n ≥ 2 n \geq 2 n2 时均为非阿贝尔群。我们通常将数组相加后得到的阿贝尔群用 G G G 进行表示,此时元素 a ∈ G a \in G aG 的逆元 a − 1 a^{-1} a1 可以表示为 − a -a a 。群的单位元(幺元)是独一无二的,我们可以得到一些更一般的结论。
命题1.1: 若有二元运算符 ⋅ \cdot : 使得 M + M → M M + M \rightarrow M M+MM 的计算结果是一个群,且 e ′ ∈ M e' \in M eM 是左单位元, e ′ ′ ∈ M e'' \in M eM 是右单位元,也即:

G 2 l :    对 于 任 意 的   a ∈ M    都 有    e ′ ⋅ a = a G 2 r :    对 于 任 意 的   a ∈ M    都 有    a ⋅ e ′ ′ = a G2l:\ \ 对于任意的\ a \in M \ \ 都有 \ \ e' \cdot a = a \\ G2r:\ \ 对于任意的\ a \in M \ \ 都有 \ \ a \cdot e'' = a G2l:   aM    ea=aG2r:   aM    ae=a
那么我们有 e ′ = e ′ ′ e'=e'' e=e
证明过程如下:若我们令等式 G 2 l G2l G2l a = e ′ ′ a=e'' a=e,那么我们有:
e ′ ⋅ e ′ ′ = e ′ ′ e' \cdot e'' = e'' ee=e
若我们令等式 G 2 r G2r G2r a = e ′ a=e' a=e,我们有:
e ′ ⋅ e ′ ′ = e ′ e' \cdot e'' = e' ee=e
那么,我们得到如下等式:
e ′ = e ′ ⋅ e ′ ′ = e ′ ′ e' = e' \cdot e'' = e'' e=ee=e
综上,我们便得到了 e ′ = e ′ ′ e'=e'' e=e
  命题1.1说明了独异点的幺元是唯一的,而所有的群都是独异点,所以群的幺元都是唯一的。此外,群中的每一个元素都有其对应的逆元,接下来我们给出一个命题:
命题1.2: 在独异点 M M M 中有幺元 e e e ,若某元素 a ∈ M a \in M aM 有左逆元 a ′ ∈ M a' \in M aM 和右逆元 a ′ ′ ∈ M a'' \in M aM,也即:
G 3 l :    a ′ ⋅ a = e G 3 r :    a ⋅ a ′ ′ = e G3l:\ \ a' \cdot a = e\\ G3r:\ \ a \cdot a'' = e G3l:  aa=eG3r:  aa=e
则有 a ′ = a ′ ′ a'=a'' a=a
证明过程如下:结合公式 G 3 l G3l G3l 以及 e e e 为群的幺元,我们可以得到
( a ′ ⋅ a ) ⋅ a ′ ′ = e ⋅ a ′ ′ = a ′ ′ (a' \cdot a) \cdot a'' = e \cdot a'' = a'' (aa)a=ea=a
同样的,结合公式 G 3 r G3r G3r 以及 e e e 为群的幺元,我们可以得到
a ′ ⋅ ( a ⋅ a ′ ′ ) = a ′ ⋅ e = a ′ a' \cdot (a \cdot a'') = a' \cdot e = a' a(aa)=ae=a
由于 M M M 是独异点,所以二元运算符 ⋅ \cdot 符合结合律,故而有
a ′ = a ′ ⋅ ( a ⋅ a ′ ′ ) = ( a ′ ⋅ a ) ⋅ a ′ ′ = a ′ ′ a' = a' \cdot (a \cdot a'') = (a' \cdot a) \cdot a'' = a'' a=a(aa)=(aa)a=a
得证 a ′ = a ′ ′ a'=a'' a=a
注意: 群的单位元(等式2)以及群的逆元素(等式3)的证明可以被弱化为仅要求 G 2 r G2r G2r (右单位元存在)和 G 3 r G3r G3r (对于群中每一个元素均存在右逆元)存在(或者是 G 2 l G2l G2l G 3 l G3l G3l 存在)。通过证明 G 2 l G2l G2l G 3 l G3l G3l 成立来证明等式2(公理2)以及等式3(公理3)成立是一个行之有效的方法。
定义1.2: 若群 G G G 由有限的 n n n 个元素组成,我们称群 G G G n n n 阶群。若群 G G G 的元素个数是无穷的,我们称群 G G G 为无限阶群。若群为有限群,那么其阶数我们使用符号 ∣ G ∣ |G| G 进行表示。
对于给定的群 G G G ,对于任意的两个子集 R , S ⊆ G R,S \subseteq G R,SG,我们令
R S = { r ⋅ s   ∣   r ∈ R ,   s ∈ S } RS=\{r \cdot s\ |\ r \in R,\ s \in S\} RS={rs  rR, sS}
特殊的,对于任意的 g ∈ G g \in G gG,如果 R = { g } R=\{g\} R={g},我们记作
g S = { g ⋅ s   ∣   s ∈ S } gS=\{g \cdot s\ |\ s \in S\} gS={gs  sS}
同样的,如果 S = { g } S=\{g\} S={g},我们记作
R g = { r ⋅ g   ∣   r ∈ R } Rg=\{r \cdot g\ |\ r \in R\} Rg={rg  rR}
  从现在开始,我们将乘法运算符进行省略,将 g 1 ⋅ g 2 g_1 \cdot g_2 g1g2 写作 g 1 g 2 g_1g_2 g1g2
定义1.3: G G G 为一个群,对于任意的 g ∈ G g \in G gG,我们令 L g L_g Lg 表示用 g g g 左平移,具体计算方式为对于任意的 a ∈ G a \in G aG L g ( a ) = g a L_g(a)=ga Lg(a)=ga。同样的,我们令 R g R_g Rg 表示用 g g g 右平移,计算方式为对于任意的 a ∈ G a \in G aG R g ( a ) = a g R_g(a)=ag Rg(a)=ag
  我们会经常用到下面这些简单的结论。
命题1.3: 给定群 G G G,其左平移 L g L_g Lg 和右平移 R g R_g Rg 得到的结果均满足双射。我们在这里仅给出左平移 L g L_g Lg 的证明过程,右平移 R g R_g Rg 的证明方式类似,证明方式如下:
  若 L g ( a ) = L g ( b ) L_g(a)=L_g(b) Lg(a)=Lg(b),那么有 g a = g b ga=gb ga=gb,我们在等式两边同乘 g − 1 g^{-1} g1,便可得到 a = b a=b a=b,所以 L g L_g Lg 满足单射。对于任意的 b ∈ G b \in G bG,我们有 L g ( g − 1 b ) = g g − 1 b = b L_g(g^{-1}b)=gg^{-1}b=b Lg(g1b)=gg1b=b,所以 L g L_g Lg 满足满射。因此, L g L_g Lg 满足双射。
  我们在这里给出单射、满射以及双射的图解表示:
在这里插入图片描述

图1.1 单射、满射、双射的示意图

  特殊的,若映射过程的定义域和值域一样,我们将这个过程称之为变换,即有作用方式 φ \varphi φ,使得 A → A A \rightarrow A AA。为了方便起见,我们在这里将映射后的结果记为 A ˉ \bar{A} Aˉ
  若我们定义 A A A 上的二元运算为 ⋅ \cdot A ˉ \bar{A} Aˉ 上的二元运算为 ⋅ ˉ \bar{\cdot} ˉ (此处的 A A A A ˉ 不 一 定 相 同 \bar{A} 不一定相同 Aˉ),对于 A A A 中的元素 a a a 经过作用方法 φ \varphi φ 后得到 a ˉ \bar{a} aˉ。那么,若我们定义 A A A 上有两个元素进行二元运算 a ⋅ b a \cdot b ab,经过函数映射后其计算结果为 φ ( a ⋅ b ) = a ⋅ b ‾ \varphi(a \cdot b)= \overline{a \cdot b} φ(ab)=ab,而对于每一个元素又都有 φ ( a ) = a ˉ ∈ A ˉ \varphi(a)=\bar{a} \in \bar{A} φ(a)=aˉAˉ φ ( b ) = b ˉ ∈ A ˉ \varphi(b)=\bar{b} \in \bar{A} φ(b)=bˉAˉ,如果满足 a ⋅ b → a ˉ ⋅ ˉ b ˉ a \cdot b \rightarrow \bar{a} \bar{\cdot} \bar{b} abaˉˉbˉ (或者写成 a ⋅ b ‾ = a ˉ ⋅ ˉ b ˉ \overline{a \cdot b}=\bar{a} \bar{\cdot} \bar{b} ab=aˉˉbˉ),称 φ \varphi φ A A A A ˉ \bar{A} Aˉ 的同态映射。我们在这里给出一些例子方便大家理解:

在这里插入图片描述

图1.3 同态的判断方式
其中“象”指函数对变量的映射结果。

  1、我们令 A = R A=R A=R A ˉ = R + \bar{A}=R^+ Aˉ=R+,其中 A A A 上的二元运算为 + + + A ˉ \bar{A} Aˉ 上的二元运算为 × \times ×,作用方式 φ \varphi φ x → e x x \rightarrow e^x xex,即求某一个变量的指数函数值。那么, ∀ x , y ∈ A , x + y ‾ = e x + y = e x e y = x ˉ y ˉ = x ˉ × y ˉ \forall x,y \in A,\overline{x+y}=e^{x+y}=e^{x}e^{y}=\bar{x}\bar{y}=\bar{x} \times \bar{y} x,yA,x+y=ex+y=exey=xˉyˉ=xˉ×yˉ,故而为同态映射。

  2、我们有 A = Z A=Z A=Z A A A 上的二元运算为 + + + A ˉ = { 1 , − 1 } \bar{A}=\{1,-1\} Aˉ={1,1} A ˉ \bar{A} Aˉ 上的二元运算为 × \times ×,作用方式 φ 1 : ∀ a ∈ A , a → 1 \varphi_1: \forall a \in A, a \rightarrow 1 φ1:aA,a1。不难发现, ∀ a , b ∈ A \forall a,b \in A a,bA a ⋅ b = a + b ∈ A a \cdot b = a+b \in A ab=a+bA,所以 a + b ‾ = φ 1 ( a + b ) = 1 \overline{a+b}=\varphi_1(a+b)=1 a+b=φ1(a+b)=1。而对于 a ˉ ⋅ ˉ b ˉ = φ 1 ( a ) × φ 1 ( b ) = 1 × 1 = 1 \bar{a} \bar{\cdot} \bar{b}=\varphi_1(a) \times \varphi_1(b)=1 \times 1=1 aˉˉbˉ=φ1(a)×φ1(b)=1×1=1,综上, a + b ‾ = a ˉ ⋅ ˉ b ˉ \overline{a+b}=\bar{a} \bar{\cdot} \bar{b} a+b=aˉˉbˉ,所以为同态映射。

  3、在2中若把映射方式改为 φ 2 : ∀ a ∈ A , a → − 1 \varphi_2: \forall a \in A, a \rightarrow -1 φ2:aA,a1,此时不难发现 a + b ‾ = φ 2 ( a + b ) = − 1 \overline{a+b}=\varphi_2(a+b)=-1 a+b=φ2(a+b)=1 a ˉ ⋅ ˉ b ˉ = φ 2 ( a ) × φ 2 ( b ) = ( − 1 ) × ( − 1 ) = 1 \bar{a} \bar{\cdot} \bar{b}=\varphi_2(a) \times \varphi_2(b)=(-1) \times (-1)=1 aˉˉbˉ=φ2(a)×φ2(b)=(1)×(1)=1,故而不为同态映射。

定义1.4: 给定一个群 G G G G G G 的子集 H H H 是其子群的充要条件是:
(1) G G G 的幺元 e e e 也是 H H H 的元素( e ∈ H e \in H eH);
(2) 对于所有的 h 1 , h 2 ∈ H h_1,h_2 \in H h1,h2H,都有 h 1 h 2 ∈ H h_1h_2 \in H h1h2H;
(3) 对于所有的 h ∈ H h \in H hH,都有 h − 1 ∈ H h^{-1} \in H h1H
  命题1.4的证明过程我们留作练习。
命题1.4: 给定一个群 G G G,其子集 H ⊆ G H \subseteq G HG 是群 G G G 的子群 ⇔ \Leftrightarrow H H H 非空且对于任意的 h 1 , h 2 ∈ H h_1,h_2 \in H h1,h2H,都有 h 1 h 2 − 1 ∈ H h_1h_2^{-1} \in H h1h21H
  若群 G G G 是有限群,那么可以使用下述判断方法。
命题1.5: 给定有限群 G G G,其子集 H ⊆ G H \subseteq G HG 是群 G G G 的子群 ⇔ \Leftrightarrow (1) e ∈ H e \in H eH; (2) 两个 H H H 做乘积运算后得到的结果是封闭的。
证明:我们仅需要证明定义1.4中的条件(3)。对于任意的 a ∈ H a \in H aH,由于左平移 L a L_a La 满足双射,这导致 H H H 满足单射,并且因为 H H H 的元素个数是有限的,所以其满足双射。由于 e ∈ H e \in H eH,所以有唯一的 b ∈ H b \in H bH 使等式 L a ( b ) = a b = e L_a(b)=ab=e La(b)=ab=e 成立。但是,如果 a − 1 a^{-1} a1 a ∈ G a \in G aG 的逆元,我们同样能得到 L a ( a − 1 ) = a a − 1 = e L_a(a^{-1})=aa^{-1}=e La(a1)=aa1=e,通过将此式和其前一个等式进行联立可以得到 a − 1 = b ∈ H a^{-1}=b \in H a1=bH
示例1.2:
  1. 对于任意的整数 n ∈ Z n \in Z nZ,集合 n Z = { n k   ∣   k ∈ Z } nZ=\{nk\ |\ k \in Z\} nZ={nk  kZ} 是群 Z Z Z 的子群。
  2. 对于 n × n n \times n n×n 的可逆矩阵而言,若其满足 G L + ( n , R ) = { A ∈ G L ( n , R )   ∣   d e t ( A ) > 0 } GL^{+}(n,R)=\{A \in GL(n,R)\ |\ det(A)>0\} GL+(n,R)={AGL(n,R)  det(A)>0},此时 G L + ( n , R ) GL^{+}(n,R) GL+(n,R) 是群 G L ( n , R ) GL(n,R) GL(n,R) 的子群。
  3. 群 S L ( n , R ) SL(n,R) SL(n,R) 是群 G L ( n , R ) GL(n,R) GL(n,R) 的子群。
  4. 群 O ( n ) O(n) O(n) 是群 G L ( n , R ) GL(n,R) GL(n,R) 的子群。
  5. 群 S O ( n ) SO(n) SO(n) 是群 O ( n ) O(n) O(n) 的子群,同时也是群 S L ( n , R ) SL(n,R) SL(n,R) 的子群。
  6. 不难发现,每一个 2 × 2 2 \times 2 2×2 的旋转矩阵 R ∈ S O ( 2 ) R \in SO(2) RSO(2) 都可以被写作
R = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) ,     其 中   0 ≤ θ < 2 π R= \left( \begin{matrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{matrix} \right),\ \ \ 其中\ 0 \leq \theta < 2\pi R=(cosθsinθsinθcosθ),    0θ<2π
   在下例中, S O ( 2 ) SO(2) SO(2) 可以被看作是 S O ( 3 ) SO(3) SO(3) 的子群

R = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) ,    Q = ( cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ 0 0 0 1 ) R= \left( \begin{matrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{matrix} \right),\ \ Q= \left( \begin{matrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{matrix} \right) R=(cosθsinθsinθcosθ),  Q=cosθsinθ0sinθcosθ0001
   我们在这里给出旋转矩阵的定义,首先观察下图:
在这里插入图片描述

图1.2 绕原点二维旋转

  首先我们需要明确的是,二维旋转是围绕坐标原点旋转,如图1.2所示。图中点 V V V 绕原点逆时针转过 θ \theta θ 角到达 V ′ V' V 点处。假设点 V V V 的坐标为 ( x , y ) (x,y) (x,y),那么 V ′ V' V 点的坐标为 ( x ′ , y ′ ) (x',y') (x,y),其中点 V V V 到原点的距离为 r r r,且射线 O V OV OV x x x 轴的夹角为 ϕ \phi ϕ。那么我们能得到如下等式:
x = r cos ⁡ ϕ ,      y = r sin ⁡ ϕ x ′ = r cos ⁡ ( θ + ϕ ) ,      y ′ = r sin ⁡ ( θ + ϕ ) x = r \cos \phi, \ \ \ \ y = r \sin \phi\\ x' = r \cos (\theta + \phi), \ \ \ \ y' = r \sin (\theta + \phi) x=rcosϕ,    y=rsinϕx=rcos(θ+ϕ),    y=rsin(θ+ϕ)
我们对 x ′ x' x y ′ y' y 的等式进行展开可得:
x ′ = r cos ⁡ θ cos ⁡ ϕ − r sin ⁡ θ sin ⁡ ϕ y ′ = r sin ⁡ θ cos ⁡ ϕ + r cos ⁡ θ sin ⁡ ϕ x' = r \cos \theta \cos \phi - r \sin \theta \sin \phi\\ y' = r \sin \theta \cos \phi + r \cos \theta \sin \phi x=rcosθcosϕrsinθsinϕy=rsinθcosϕ+rcosθsinϕ
我们将 x x x y y y 的表达式代入上式可得:
x ′ = x cos ⁡ θ − y sin ⁡ θ ,      y ′ = x sin ⁡ θ + y cos ⁡ θ x' = x \cos \theta - y \sin \theta, \ \ \ \ y' = x \sin \theta + y \cos \theta x=xcosθysinθ,    y=xsinθ+ycosθ
我们将上述结果用矩阵进行表示可得:
[ x ′ y ′ ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ x y ] \left[ \begin{matrix} x'\\ y' \end{matrix} \right]= \left[ \begin{matrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{matrix} \right] \left[ \begin{matrix} x\\ y \end{matrix} \right] [xy]=[cosθsinθsinθcosθ][xy]
不难发现此处的系数矩阵便是我们的二阶旋转矩阵。那么我们尝试考虑一下三维空间内绕 z z z 轴旋转的情况是什么样子的呢,我们先给出一个直观的感受。
在这里插入图片描述

图1.3 绕x轴三维旋转

如图1.3所示,我们对 O Y OY OY O Z OZ OZ x x x 轴旋转 θ \theta θ 角度,分别到达 O Y ′ OY' OY 以及 O Z ′ OZ' OZ 的位置,那么 Y ′ Y' Y 的坐标为 ( 0 , r cos ⁡ θ , r sin ⁡ θ ) (0,r \cos \theta,r \sin \theta) (0,rcosθ,rsinθ) Z ′ Z' Z 的坐标为 ( 0 , − r sin ⁡ θ , r cos ⁡ θ ) (0,-r \sin \theta,r \cos \theta) (0,rsinθ,rcosθ),为了简单起见,我们取 r = 1 r=1 r=1,那么 Y Y Y 的坐标为 ( 0 , 1 , 0 ) (0,1,0) (0,1,0) Z Z Z 的坐标为 ( 0 , 0 , 1 ) (0,0,1) (0,0,1),而 X X X 的坐标始终不变。所以我们有如下等式:
x ′ = x y ′ = y cos ⁡ θ − z sin ⁡ θ z ′ = y sin ⁡ θ + z cos ⁡ θ x' = x\\ y' = y \cos \theta - z \sin \theta \\ z' = y \sin \theta + z \cos \theta x=xy=ycosθzsinθz=ysinθ+zcosθ
其中, y ′ , z ′ y',z' y,z 的计算方式参见二维情况,我们将上述等式组利用矩阵进行表示如下:
[ x ′ y ′ z ′ ] = [ 1 0 0 0 cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ ] [ x y z ] \left[ \begin{matrix} x'\\ y'\\ z' \end{matrix} \right]= \left[ \begin{matrix} 1 & 0 & 0\\ 0 & \cos \theta & -\sin \theta\\ 0 & \sin \theta & \cos \theta \end{matrix} \right] \left[ \begin{matrix} x\\ y\\ z \end{matrix} \right] xyz=1000cosθsinθ0sinθcosθxyz

不难发现此形式和三阶旋转矩阵相同,只是示例6中的三阶旋转矩阵是绕 z z z 轴旋转得到的。那么,旋转矩阵有什么性质呢?我们以二阶为例进行分析。我们将二阶旋转矩阵记为 R R R ,不难发现其行列式计算结果为1,且矩阵的转置等于矩阵的逆,也即 R R R 为正交阵。

  7. 形如下式这种 2 × 2 2 \times 2 2×2 的上三角矩阵
( a b 0 c )    a , b , c ∈ R      a , c ≠ 0 \left( \begin{matrix} a & b\\ 0 & c \end{matrix} \right)\ \ a,b,c \in R\ \ \ \ a,c \neq 0 (a0bc)  a,b,cR    a,c=0

   是群 G L ( 2 , R ) GL(2,R) GL(2,R) 的子群。
  8. 集合 V V V 由4个矩阵组成,这些矩阵的具体形式如下
( ± 1 0 0 ± 1 ) \left( \begin{matrix} \pm 1 & 0\\ 0 & \pm 1 \end{matrix} \right) (±100±1)
集合 V V V 是群 G L ( 2 , R ) GL(2,R) GL(2,R) 的子群,被称为克莱因四元群。
定义1.5: H H H G G G 的一个子群,并且对于任意的 g ∈ G g \in G gG,形如 g H gH gH 的计算方式称为 H H H G G G 中的左陪集,形如 H g Hg Hg 的计算方式称为 H H H G G G 中的右陪集。 H H H 的左陪集(右陪集亦同)中包含一种等价关系 ∼ \sim ,定义如下:对于所有的 g 1 , g 2 ∈ G g_1,g_2 \in G g1,g2G
g 1 ∼ g 2 ⇔ g 1 H = g 2 H ,    同 理 g 1 ∼ g 2 ⇔ H g 1 = H g 2 g_1 \sim g_2 \Leftrightarrow g_1H=g_2H, \ \ 同理\\ g_1 \sim g_2 \Leftrightarrow Hg_1=Hg_2 g1g2g1H=g2H,  g1g2Hg1=Hg2
显然, ∼ \sim 是一种等价关系。我们这里先说明关系的定义:对于 R : A × A → D R:A \times A \rightarrow D RA×AD,其中 D = { 对 , 错 } D=\{对,错\} D={} R R R 为Relation的首字母,若 R ( a , b ) = 对 R(a,b)=对 R(a,b)=,那么我们说 ( a , b ) (a,b) (a,b) 满足关系 R R R,记为 a R b aRb aRb。例如: A = { 1 , 2 } A=\{1,2\} A={1,2} R R R 表示 > > >,那么 > ( 1 , 2 ) = { 错 } , > ( 2 , 1 ) = { 对 } >(1,2)=\{错\},>(2,1)=\{对\} >(1,2)={}>(2,1)={},所以 ( 2 , 1 ) (2,1) (2,1) 满足关系 > > >,记为 2 > 1 2>1 2>1。那么什么是等价关系呢?等价关系首先应该满足关系,除此之外还要满足:(1)反身性: ∀ a ∈ A , a ∼ a \forall a \in A,a \sim a aA,aa;(2)对称性: ∀ a , b ∈ A \forall a,b \in A a,bA,若 a ∼ b a \sim b ab,则 b ∼ a b \sim a ba;(3)传递性: ∀ a , b , c ∈ A \forall a,b,c \in A a,b,cA,若 a ∼ b , b ∼ c a \sim b,b \sim c ab,bc,则 a ∼ c a \sim c ac。例如:相等、三角形相似、三角形全等都是等价关系。我们给出一个例子加以说明:
  例:我们有 A = Z A=Z A=Z,关系定义如下:当 a = b   ( m o d   n ) a=b \ (mod\ n) a=b (mod n) 时, R ( a , b ) → 对 R(a,b) \rightarrow 对 R(a,b),否则, R ( a , b ) → 错 R(a,b) \rightarrow 错 R(a,b),其中 n n n 为正整数。我们来验证 R R R 满足等价关系:
(1): R ( a , a ) ⇒ a   m o d   n = a   m o d   n R(a,a) \Rightarrow a\ mod \ n=a\ mod \ n R(a,a)a mod n=a mod n 恒成立,所以满足反身性;
(2): a R b ⇒ a   m o d   n = b   m o d   n ⇒ b   m o d   n = a   m o d   n ⇒ b R a aRb \Rightarrow a \ mod \ n=b \ mod \ n \Rightarrow b \ mod \ n=a \ mod \ n\Rightarrow bRa aRba mod n=b mod nb mod n=a mod nbRa,所以满足对称性;
(3): a R b , b R c ⇒ a   m o d   n = b   m o d   n ,   b   m o d   n = c   m o d   n ⇒ a   m o d   n = c   m o d   n aRb,bRc \Rightarrow a\ mod \ n=b \ mod \ n,\ b \ mod \ n=c \ mod \ n \Rightarrow a \ mod \ n=c\ mod \ n aRb,bRca mod n=b mod n, b mod n=c mod na mod n=c mod n,所以满足传递性。
我们在这里将满足同余关系的所有元素可以归为一类,将其称为剩余类,例如余数为0的记作 [ 0 ] [0] [0],余数为1的记作 [ 1 ] [1] [1],依此类推,那么我们可以将整个集合 A A A 划分为 n n n 个互不相交的类,我们将该过程称为集合的分类。
  现在,我们引入如下结论:

小编QQ:807698462,欢迎一起讨论

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
宾夕法尼亚大学计算机和信息科学系教授 Jean Gallier 的开源书籍《Algebra, Topology, Differential Calculus, and Optimization Theory For Computer Science and Engineering》用一本书的容量解决了所有问题。这本书涵盖了计算机科学所需的线性代数、微分和最优化理论等问题,可谓详尽。近年来,计算机科学、机器人学、机器学习和数据科学已经成为技术发展的重要推力。任何查看这些领域相关论文的人都会受到一些奇怪术语的困扰,如核 PCA、岭回归、套索回归、支持向量机(SVM)、拉格朗日乘数、KKT 条件等。这些奇怪的术语背后涉及的是大量有关最优化理论的「经典」线性代数知识。那么问题来了:要想理解并用好机器学习、计算机视觉等领域的工具,你就需要打好线性代数最优化理论的知识基础。而且,你还需要学一些概率和统计方面的东西。 很多有关机器学习的书籍都在试图解决上述问题。如果你不了解拉格朗日对偶框架,那又从何理解领回归问题的对偶变量呢?同样地,如果你没有深刻理解拉格朗日框架,又怎么可能探讨 SVM 的对偶公式呢?对这些问题避而不谈是一种省事的解决方式。如果你只是上述方法技巧的使用者,「食谱」类方法或许就足够了。但是,这种方法并不适用于那些真正想要从事研究并希望做出重大贡献的人。所以,作者认为,你还必须具有扎实的线性代数最优化理论等方面的背景知识。这会是一个问题,因为你需要投入大量的时间和精力来学习这些领域的知识,但作者相信坚持不懈的努力总会收到丰厚的回报。这本书讲了什么?这本书的主要目的是介绍线性代数最优化理论的基础知识以及这些知识在机器学习、机器人学、计算机视觉等领域的应用。 该书包含以下 10 卷: 1. 线性代数 2. 仿射几何和射影几何 3. 双线性形式的几何 4. 几何:PID、UFD、诺特环、张量、PID 上的模块、规范形 5. 拓扑和微分 6. 最优化理论基础 7. 线性优化 8. 非线性优化 9. 在机器学习的应用 10. 附录

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值