numpy.absolute
-
用例:
numpy.absolute(x, /, out=None, *, where=True, casting=‘same_kind’, order=‘K’, dtype=None, subok=True[, signature, extobj]) = <ufunc ‘absolute’> -
功能:
对数组中的每一个元素求其绝对值。
np.abs
是这个函数的简写。 -
参数
变量名 | 数据类型 | 功能 |
---|---|---|
x | 数组型变量 | 输入数组。 |
out | n维数组,None,n维数组组成的元组,可选参数 | 指定结果存储的位置。若提供此参数,其维度必须与输入数组广播后的维度一致。若不提供此参数或参数值为None,将返回新开辟的数组。若此参数为元组,其长度必须和返回值的个数保持一致。 |
where | 数组型变量,可选参数 | True 用于标记进行函数计算的位置,False 用于标记此位置不进行函数计算,直接将输入值原样返回,通常用默认值即可。 |
- 返回值
变量名 | 数据类型 | 功能 |
---|---|---|
absolute | n维数组 | 由x中每个元素的绝对值组成的n维数组。对于输入值为复数的情况a + ib ,其绝对值为
a
2
+
b
2
\sqrt{a^2+b^2}
a2+b2。如果x为标量,那么返回值也为标量。 |
- 示例:
import numpy as np
x = np.array([-1.2, 1.2])
print('常数数组的绝对值:{}'.format(np.absolute(x)))
print('复数数组的绝对值:{}'.format(np.absolute(1.2 + 1j)))
常数数组的绝对值:[1.2 1.2]
复数数组的绝对值:1.5620499351813308
绘制定义域在[-10, 10]
上的函数图像:
import matplotlib.pyplot as plt
x = np.linspace(start=-10, stop=10, num=101)
plt.plot(x, np.absolute(x))
plt.show()
绘制复数平面上的函数图像:
xx = x + 1j * x[:, np.newaxis]
plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10], cmap='gray')
plt.show()