Sklearn之数据预处理——StandardScaler

为什么要进行归一化?

机器学习模型被互联网行业广泛应用,一般做机器学习应用的时候大部分时间是花费在特征处理上,其中很关键的一步就是对特征数据进行归一化,为什么要归一化呢?维基百科给出的解释:

  • 归一化后加快了梯度下降求最优解的速度;

如果机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收敛甚至不能收敛。

  • 归一化有可能提高精度;

一些分类器需要计算样本之间的距离(如欧氏距离),例如KNN。如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时实际情况是值域范围小的特征更重要)。

哪些机器学习算法不需要(需要)做归一化?

 概率模型(树形模型)不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、RF。而像Adaboost、SVM、LR、Knn、KMeans之类的最优化问题就需要归一化。

StandardScaler原理

作用:去均值和方差归一化。且是针对每一个特征维度来做的,而不是针对样本。 

标准差标准化(standardScale)使得经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:

             

其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

  • 下面使用numpy来实现一个矩阵的标准差标准化
import numpy as np

x_np = np.array([[1.5, -1., 2.],
                [2., 0., 0.]])
mean = np.mean(x_np, axis=0)
std = np.std(x_np, axis=0)
print('矩阵初值为:{}'.format(x_np))
print('该矩阵的均值为:{}\n 该矩阵的标准差为:{}'.format(mean,std))
another_trans_data = x_np - mean
another_trans_data = another_trans_data / std
print('标准差标准化的矩阵为:{}'.format(another_trans_data))
矩阵初值为:[[ 1.5 -1.   2. ]
            [ 2.   0.   0. ]]
该矩阵的均值为:  [ 1.75 -0.5   1.  ]
该矩阵的标准差为:[0.25 0.5  1.  ]
标准差标准化的矩阵为:[[-1. -1.  1.]
                     [ 1.  1. -1.]]

经结果验证,新值符合 --->(旧值-均值)/ 标准差 .

  • 下面使用sklearn提供的StandardScaler方法
from sklearn.preprocessing import StandardScaler  # 标准化工具
import numpy as np

x_np = np.array([[1.5, -1., 2.],
                [2., 0., 0.]])
scaler = StandardScaler()
x_train = scaler.fit_transform(x_np)
print('矩阵初值为:{}'.format(x_np))
print('该矩阵的均值为:{}\n 该矩阵的标准差为:{}'.format(scaler.mean_,np.sqrt(scaler.var_)))
print('标准差标准化的矩阵为:{}'.format(x_train))
矩阵初值为:[[ 1.5 -1.   2. ]
            [ 2.   0.   0. ]]
该矩阵的均值为:   [ 1.75 -0.5   1.  ]
 该矩阵的标准差为:[0.25 0.5  1.  ]
标准差标准化的矩阵为:[[-1. -1.  1.]
                     [ 1.  1. -1.]]

可以发现,sklearn的标准化工具实例化后会有两个属性,一个是mean_(均值),一个var_(方差)。最后的结果和使用numpy是一样的。

其他的归一化类型

  • 线性归一化

这种归一化方法比较适用在数值比较集中的情况。这种方法有个缺陷,如果max和min不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。实际使用中可以用经验常量值来替代max和min。

  • 非线性归一化 

经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括 log、指数,正切等。需要根据数据分布的情况,决定非线性函数的曲线,比如log(V, 2)还是log(V, 10)等。

 

  • 114
    点赞
  • 487
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
数据预处理中的自定义转换是指将数据集中的原始数据按照一定的规则进行处理,以便于后续的模型训练和应用。C++作为一门强类型语言,提供了丰富的数据类型和操作函数,可以非常方便地实现数据预处理中的自定义转换。下面以一个简单的案例来演示如何使用C++实现数据预处理中的自定义转换。 假设我们有一个包含学生信息的数据集,其中每个学生的信息包括姓名、年龄、性别与成绩四个属性。现在我们要对这个数据集进行处理,将每个学生的成绩按照以下规则转换为一个0~5的整数: - 小于60分的成绩转换为0 - 60~69分的成绩转换为1 - 70~79分的成绩转换为2 - 80~89分的成绩转换为3 - 90~99分的成绩转换为4 - 100分的成绩转换为5 下面是一个使用C++实现的解决方案: ```c++ #include <iostream> #include <vector> #include <string> using namespace std; // 定义一个结构体,表示学生信息 struct Student { string name; int age; char gender; int score; }; // 自定义转换函数,将成绩转换为0~5的整数 int score_transform(int score) { if (score < 60) { return 0; } else if (score < 70) { return 1; } else if (score < 80) { return 2; } else if (score < 90) { return 3; } else if (score < 100) { return 4; } else { return 5; } } int main() { // 定义一个学生信息列表 vector<Student> students = { {"张三", 18, 'M', 75}, {"李四", 19, 'F', 68}, {"王五", 20, 'M', 92}, {"赵六", 21, 'F', 85} }; // 遍历学生信息列表,将成绩转换为整数 for (auto& student : students) { student.score = score_transform(student.score); } // 输出转换后的学生信息列表 for (auto& student : students) { cout << student.name << " " << student.age << " " << student.gender << " " << student.score << endl; } return 0; } ``` 在上面的代码中,我们首先定义了一个包含学生信息的结构体`Student`,并且定义了一个自定义转换函数`score_transform`,用于将成绩转换为整数。然后我们定义了一个学生信息列表`students`,并且遍历该列表,将每个学生的成绩按照自定义转换函数进行转换。最后我们输出转换后的学生信息列表。 需要注意的是,在实际应用中,我们可能需要进行更加复杂的自定义转换,例如对数据进行归一化、标准化、降维等处理。C++提供了丰富的函数库和工具,可以帮助我们实现这些复杂的自定义转换。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值