Tensorflow
文章平均质量分 85
入门系列
龙王.*?
向来心是看客心,奈何人是剧中人。
展开
-
Tensorflow2——常用结构详细汇总
目录模型建立方式函数式卷积输出 = tf.keras.layers.Conv2D(参数)(输入)池化输出 = tf.nn.max_pool(input, ksize=[1, height, width, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool"))输出 = tf.keras.layers.MaxPool2D( pool_size=(2, 2),strides=None, padding='valid', data_format=No翻译 2021-01-22 17:44:20 · 452 阅读 · 0 评论 -
tensorflow——summary
目录简介创建实例——tf.summary.create_file_writer()实例常用方法set_as_default()as_default()flush()close()写入函数tf.summary.scalar()tf.summary.histogram()tf.summary.text()tf.summary.image()tf.summary.audio()开启tensorborad简介在训练过程中记录数据的利器:tf.summary()提供了各类方法(支持各种多种格式)用于保存训练过程翻译 2021-01-11 16:15:22 · 1180 阅读 · 0 评论 -
tensorflow——常用的数据处理函数
目录tf.reduce_sum()tf.reduce_mean()tf.one_hot()tf.square()tf.argmax()tf.reshape()tf.expand_dims()tf.reduce_sum()reduce_sum(input_tensor, axis=None, keepdims=False, name=None):求和函数x = tf.constant([[1, 1, 1], [1, 1, 1]])tf.reduce_sum(x) # 6tf.reduce_su翻译 2021-01-08 21:03:33 · 223 阅读 · 0 评论 -
Tensorflow2.0——自动求导API
目录前言一元二次方程求导二元二次方程求偏导前言TensorFlow 为自动微分提供了 tf.GradientTape API ,根据某个函数的输入变量来计算它的导数。在深度神经网络训练过程中最常用的误差反向传播算法(Error Back Propagation Training)是更新网络权重的关键,求偏导常用到这种机制。一元二次方程求导只有tf.Variable对象不需要使用watch方法。import tensorflow as tf#最简单的实现y= 2*x*x + x的求导x翻译 2020-08-08 19:35:29 · 353 阅读 · 0 评论 -
tensorflow2.0——损失函数
目录均方误差损失函数 mean_squared_error手写代码平均绝对误差 mean_absolute_error手写代码Huber损失 huber_loss手写代码待续在tensorflow2.0 中,使用模块model.compile时,使用loss选择损失函数。均方误差损失函数 mean_squared_error均方误差函数,又称mse,最基本的损失函数表示法,通常情况下mse函数会整体乘上二分之一,方便简化求导出的函数。loss = ‘mean_squared_erro翻译 2020-08-06 19:01:48 · 3076 阅读 · 0 评论 -
Tensorflow2.0——激活函数
目录十万个为什么为什么需要激活函数且为非线性函数?为什么激活函数要连续可导(允许部分点不可导)?成为激活需要哪些条件?常用激活函数及对应特点sigmoid函数 tf.sigmoid()softmax函数 tf.keras.activations.softmaxTanh函数 tf.keras.activations.tanhReLU函数 tf.keras.activations.relu十万个为什么为什么需要激活函数且为非线性函数?神经网络结构的输出为所有输入的加权和,这导致整个神经网翻译 2020-08-02 20:52:43 · 949 阅读 · 0 评论 -
Tensorflow2.0——“tf.keras”API
目录前言基本模型搭建 tf.keras.Sequential模型评估模型预测函数API模型类模型回调函数模型的保存和恢复前言Keras是一个基于Python编写的高层神经网络API,强调用户友好性、模块化及易扩展等,其后端可以采用TensorFlow、Theano及CNTK,目前大多是以TensorFlow作为后端引擎的。考虑到Keras优秀的特性及它的受欢迎程度,TensorFlow将Keras的代码吸收进来,并将其作为高级API提供给用户使用。“tf.keras”不强调原来Keras的后端可互换性翻译 2020-08-02 16:09:37 · 254 阅读 · 0 评论 -
Tensorflow2.0——“tf.data”API
“tf.data”API前言代码示例加载数据集使用数据集数据创建功能函数前言高效的数据输入管道可以很大程度地提升模型性能,减少模型训练所需要的时间。数据输入管道本质是一个ELT(Extract、Transform和Load)过程:Extract:从硬盘中读取数据(可以是本地的,也可以是云端的)Transform:数据的预处理(如数据清洗、格式转换等)Load:将处理好的数据加载到计算设备(例如CPU、GPU及TPU等)数据输入管道一般使用CPU来执行ELT过程,GPU等其他硬件加速设备翻译 2020-08-02 09:58:59 · 795 阅读 · 0 评论 -
Tensorflow入门系列(二)——读取csv文件代码详解
tf.train.string_input_producer()Tensorflow对于数据的读取有三种方式:1、一种是通过占位符的方式feeding,这种一般是通过PIL或Numpy接收数据,在来喂入神经网络。2、一种是读取文件数据,适合大型数据集的使用。3、最后一种是利用常量或变量存储数据,达到预加载的数据的效果,适用于数据量比较小。string_input_producer(string_tensor,num_epochs=None,shuffle=True,seed=None,翻译 2020-06-01 19:55:52 · 948 阅读 · 0 评论 -
Tensorflow入门系列(一)
变量和常量tf.VariableTensorflow的变量在初始化时就需要给定初始化值和数据的类型,之后这个变量的值可以发生变换,但是它的类型和维数是固定的。如果你想手动更改变量的值,需要使用tf.assign(变量名,新值)。如果你想手动改变的值的形状与初始值形状不同,你不仅要求使用tf.assgin函数,还要求变量初始化时的参数validate_shape=False,代表运行形状改变。1.initial_value: 一个Tensor类型或者是能够转化为Tensor的python对象翻译 2020-05-27 14:21:53 · 342 阅读 · 0 评论