Pandas
龙王.*?
向来心是看客心,奈何人是剧中人。
展开
-
Pandas——温故一遍(四)
目录时间序列常用时间处理库datetime字符串转datetime srtptime方法字符串转datetime srtftime方法时间序列基础选择某一行、子集 truncate()时间索引含有重复日期范围、频率和移位生成日期范围 date_range()频率 pandas.tseries.offsets import Hour,Minute月中某星期的日期使用偏置进行移位日期与groupby一起使用 resample()时区处理 pytz库时区的本地化和转换 参数tz t翻译 2020-07-23 08:42:18 · 368 阅读 · 0 评论 -
Pandas——温故一遍(三)
目录数据聚合与分组操作GroupBy机制遍历各分组数据聚合优化的groupby方法describe()自定义聚合函数同时传递多个方法同时传递给多个指定列方法同时给多列指定不同的聚合方法应用:通用拆分-应用-联合apply与cut相结合与填充值相结合索引将某列或多列设为索引将分层索引或索引移动回列中交换分层索引位置指定按某一个索引排序联合与合并数据集根据列名合并(数据库风格) merge()方法参数说明根据索引合并 merge()、join()沿轴向连接 concat()联合重叠数据数据聚合与分组操作翻译 2020-07-21 20:45:43 · 165 阅读 · 0 评论 -
Pandas——温故一遍(二)
目录数据载入、存储及文件格式文本格式数据的读写csv、txt文件的操作数据载入数据写入文本格式XLS、XLSX文件的操作数据载入数据写入JSON文件的操作XML文件的操作数据清洗与准备处理缺失值数据转换删除重复值drop_duplicates使用函数或映射进行数据转换替代值重命名轴索引离散化和分箱检测和过滤异常值随机抽样pandas中的向量化字符串函数数据载入、存储及文件格式文本格式数据的读写csv、txt文件的操作数据载入方法pandas.read_csv:读取分隔好的数据,默认分隔符是翻译 2020-07-19 15:15:32 · 278 阅读 · 0 评论 -
Pandas——温故一遍(一)
目录Series初始化常用属性常用方法DataFrame初始化常用属性常用方法1、head()、tail()2、修改列值,3、增加列4、删除列5、删除行6、取出多行或多列索引对象基本功能重建索引reindex()算术和数据对齐使用填充值的算术方法常用算数方法DataFrame和Series间的操作函数应用和映射映射到每一行或每一列映射到每一个元素映射到某一列或某一行的每个元素排序行索引排序列索引排序Series值排序DataFrame值排序SeriesSeries是一种一维的数组型对象,它包含了一个值翻译 2020-07-17 14:31:42 · 312 阅读 · 0 评论 -
Pandas教程——(二)
本次教程你将学会以下几点:由numpy创建数据集 导出到txt文件 从txt文件读取 分析数据 展现数据导包# Import all libraries needed for the tutorialimport pandas as pdfrom numpy import randomimport matplotlib.pyplot as pltimport sys #...翻译 2019-05-29 21:59:19 · 724 阅读 · 1 评论 -
Pandas教程——(九)
本次教程你将学会以下几点:从表格中导入和读取 json格式的导入和读取导包import pandas as pd创建数据d = [1,2,3,4,5]s = ['a','b','c','d','e']df = pd.DataFrame(list(zip(d,s)), columns = ['Number','Str'])print(df) Numb...翻译 2019-06-01 22:17:42 · 898 阅读 · 0 评论 -
Pandas修改列名
d = [1,2,3,4,5]s = ['a','b','c','d','e']df = pd.DataFrame(list(zip(d,s)), columns = ['Number','Str']) Number Str0 1 a1 2 b2 3 c3 4 d4 5 e暴力修改直接...转载 2019-06-01 21:21:41 · 6782 阅读 · 0 评论 -
Pandas教程——(一)
本次教程你将学会以下几点:导包 自己创建数据 由数据创建frames对象 将数据集以csv格式导出 从csv文件读取 分析数据(找最大值) 展现数据导包# Import all libraries needed for the tutorial# General syntax to import specific functions in a library: ##fr...翻译 2019-05-29 20:49:54 · 2182 阅读 · 0 评论 -
Pandas教程——(八)
本次教程你将学会以下几点:连接mysql数据库 从数据库内读取数据 将数据库的数据转为.txt、.xlsx、.csv格式。 将DataFrame传入数据库导包# Import librariesimport pandas as pdimport sysfrom sqlalchemy import create_engine连接数据库# ParametersTab...翻译 2019-06-01 15:07:18 · 355 阅读 · 0 评论 -
Pandas处理异常 ValueError: If using all scalar values, you must pass an index
问题描述:使用pd的DataFrame()方法,想其加入一个字典参数,就报如下的错误信息。from datetime import datetimedata_dict = { 'c_time':datetime.now().strftime('%y-%m-%d %H:%M:%s'), 'id':56, 'name':'牛逼', 'sex':0, ...转载 2019-06-01 12:44:59 · 26652 阅读 · 0 评论 -
Pandas教程——(七)
本次教程你将学会以下几点:创建数据 离散值的计算导包import pandas as pdimport sys创建数据使用pd.concat()方法将多个DataFrame连接起来,默认是外连接,即取并集。参考博客# Create a dataframe with dates as your indexStates = ['NY', 'NY', 'NY', 'NY'...翻译 2019-05-31 14:25:47 · 355 阅读 · 0 评论 -
Pandas教程——(六)
本次教程你将学会以下几点:创建数据 分组函数groupby导包# Import librariesimport pandas as pdimport sys创建数据# Our small data setd = {'one':[1,1,1,1,1], 'two':[2,2,2,2,2], 'letter':['a','a','b','b','c']...翻译 2019-05-31 09:35:28 · 240 阅读 · 0 评论 -
Pandas教程——(五)
本次教程你将学会以下几点:stack()用法 unstack()用法 .T用法导包# Import librariesimport pandas as pdimport sys创建数据d = {'one':[1,2],'two':[3,4]}i = ['a','b']df = pd.DataFrame(d,index=i)print(df) one ...翻译 2019-05-31 09:15:06 · 291 阅读 · 0 评论 -
Pandas教程——(四)
本次教程你将学会以下几点:增加列 删除列 索引运算导包# Import librariesimport pandas as pdimport numpy as npimport sys创建数据d = np.linspace(0,50,12,dtype='int64')df = pd.DataFrame(d)print(df.head()) 00 ...翻译 2019-05-30 21:27:27 · 422 阅读 · 0 评论 -
Pandas教程——(三)
本次教程你将学会以下几点:自定义函数创建数据集 将数据导出到xlsx文件 从xlsx文件读取数据 分析数据 展现数据导包# Import librariesimport pandas as pdimport matplotlib.pyplot as pltimport numpy as npimport sysimport matplotlib%matplotli...翻译 2019-05-30 20:16:16 · 628 阅读 · 0 评论 -
Pandas时间序列——date_range方法
转载来源功能date_range()方法主要用于生成一系列特定的时间,我们可以自己设定开始、结束、周期数、时间间隔、时区等等。语法import pandaspandas.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=Non...转载 2019-05-30 11:06:53 · 10349 阅读 · 0 评论