布隆过滤器之HASH算法(Java版)

布隆过滤器使用二进制向量结合hash函数来记录任意一条数据是否已经存在于集合中。
布隆过滤器的执行流程为:

  • 首先申请包含SIZE个bit位的Bit集合,并将所有Bit置0。
  • 然后使用数种(k)不同的哈希函数对目标数据进行哈希计算并得到k个哈希值(确保哈希值不超过SIZE大小),然后将Bit集合中以哈希值为下标所处的bit值置为1,由于使用了k个哈希函数,因此记录一条数据的信息将在Bit集合中把k个bit值置为1。
  • 由于哈希函数的稳定性,任意两条相同的数据在Bit集合中所对应的k个bit位置是完全相同的。那么在检测某一条数据是否已经在Bit集合中有记录时,只需检测该条数据的k个哈希值在Bit集合中对应的位置的bit是否均已被标记为1,相反的只要其存在一个哈希值对应的bit位置未被标记为1,则证明该值未被记录过。

优缺点

  • 优点
    时间复杂度为O(n),且布隆过滤器不需要存储元素本身,使用位阵列,占用空间也很小。
  • 缺点
    通过布隆过滤,我们能够准确判断一个数不存在于某个集合中,但对于存在于集合中这个结论,布隆过滤会有误报(可能存在两组不同数据但其多个哈希值完全一样的情况)。但是通过控制Bit集合的大小(即SIZE)以及哈希函数的个数,可以将出现冲突的概率控制在极小的范围内,或者通过额外建立白名单的方式彻底解决哈希冲突问题。

常用的hash算法如下:

package com.lyz.hash;
 
/**
 * Hash算法大全<br>
 * 推荐使用FNV1算法
 * @author liuyazhuang
 */
public class HashAlgorithms {
	/**
	 * 加法hash
	 * 
	 * @param key
	 *            字符串
	 * @param prime
	 *            一个质数
	 * @return hash结果
	 */
	public static int additiveHash(String key, int prime) {
		int hash, i;
		for (hash = key.length(), i = 0; i < key.length(); i++)
			hash += key.charAt(i);
		return (hash % prime);
	}
 
	/**
	 * 旋转hash
	 * 
	 * @param key
	 *            输入字符串
	 * @param prime
	 *            质数
	 * @return hash值
	 */
	public static int rotatingHash(String key, int prime) {
		int hash, i;
		for (hash = key.length(), i = 0; i < key.length(); ++i)
			hash = (hash << 4) ^ (hash >> 28) ^ key.charAt(i);
		return (hash % prime);
		// return (hash ^ (hash>>10) ^ (hash>>20));
	}
	// 替代:
	// 使用:hash = (hash ^ (hash>>10) ^ (hash>>20)) & mask;
	// 替代:hash %= prime;
 
	/**
	 * MASK值,随便找一个值,最好是质数
	 */
	static int M_MASK = 0x8765fed1;
 
	/**
	 * 一次一个hash
	 * 
	 * @param key
	 *            输入字符串
	 * @return 输出hash值
	 */
	public static int oneByOneHash(String key) {
		int hash, i;
		for (hash = 0, i = 0; i < key.length(); ++i) {
			hash += key.charAt(i);
			hash += (hash << 10);
			hash ^= (hash >> 6);
		}
		hash += (hash << 3);
		hash ^= (hash >> 11);
		hash += (hash << 15);
		// return (hash & M_MASK);
		return hash;
	}
 
	/**
	 * Bernstein's hash
	 * 
	 * @param key
	 *            输入字节数组
	 * @param level
	 *            初始hash常量
	 * @return 结果hash
	 */
	public static int bernstein(String key) {
		int hash = 0;
		int i;
		for (i = 0; i < key.length(); ++i)
			hash = 33 * hash + key.charAt(i);
		return hash;
	}
 
	/**
	 * Universal Hashing
	 */
	public static int universal(char[] key, int mask, int[] tab) {
		int hash = key.length, i, len = key.length;
		for (i = 0; i < (len << 3); i += 8) {
			char k = key[i >> 3];
			if ((k & 0x01) == 0)
				hash ^= tab[i + 0];
			if ((k & 0x02) == 0)
				hash ^= tab[i + 1];
			if ((k & 0x04) == 0)
				hash ^= tab[i + 2];
			if ((k & 0x08) == 0)
				hash ^= tab[i + 3];
			if ((k & 0x10) == 0)
				hash ^= tab[i + 4];
			if ((k & 0x20) == 0)
				hash ^= tab[i + 5];
			if ((k & 0x40) == 0)
				hash ^= tab[i + 6];
			if ((k & 0x80) == 0)
				hash ^= tab[i + 7];
		}
		return (hash & mask);
	}
 
	/**
	 * Zobrist Hashing
	 */
	public static int zobrist(char[] key, int mask, int[][] tab) {
		int hash, i;
		for (hash = key.length, i = 0; i < key.length; ++i)
			hash ^= tab[i][key[i]];
		return (hash & mask);
	}
 
	// LOOKUP3
	// 见Bob Jenkins(3).c文件
 
	// 32位FNV算法
	static int M_SHIFT = 0;
 
	/**
	 * 32位的FNV算法
	 * 
	 * @param data
	 *            数组
	 * @return int值
	 */
	public static int FNVHash(byte[] data) {
		int hash = (int) 2166136261L;
		for (byte b : data)
			hash = (hash * 16777619) ^ b;
		if (M_SHIFT == 0)
			return hash;
		return (hash ^ (hash >> M_SHIFT)) & M_MASK;
	}
 
	/**
	 * 改进的32位FNV算法1
	 * 
	 * @param data
	 *            数组
	 * @return int值
	 */
	public static int FNVHash1(byte[] data) {
		final int p = 16777619;
		int hash = (int) 2166136261L;
		for (byte b : data)
			hash = (hash ^ b) * p;
		hash += hash << 13;
		hash ^= hash >> 7;
		hash += hash << 3;
		hash ^= hash >> 17;
		hash += hash << 5;
		return hash;
	}
 
	/**
	 * 改进的32位FNV算法1
	 * 
	 * @param data
	 *            字符串
	 * @return int值
	 */
	public static int FNVHash1(String data) {
		final int p = 16777619;
		int hash = (int) 2166136261L;
		for (int i = 0; i < data.length(); i++)
			hash = (hash ^ data.charAt(i)) * p;
		hash += hash << 13;
		hash ^= hash >> 7;
		hash += hash << 3;
		hash ^= hash >> 17;
		hash += hash << 5;
		return hash;
	}
 
	/**
	 * Thomas Wang的算法,整数hash
	 */
	public static int intHash(int key) {
		key += ~(key << 15);
		key ^= (key >>> 10);
		key += (key << 3);
		key ^= (key >>> 6);
		key += ~(key << 11);
		key ^= (key >>> 16);
		return key;
	}
 
	/**
	 * RS算法hash
	 * 
	 * @param str
	 *            字符串
	 */
	public static int RSHash(String str) {
		int b = 378551;
		int a = 63689;
		int hash = 0;
		for (int i = 0; i < str.length(); i++) {
			hash = hash * a + str.charAt(i);
			a = a * b;
		}
		return (hash & 0x7FFFFFFF);
	}
	/* End Of RS Hash Function */
 
	/**
	 * JS算法
	 */
	public static int JSHash(String str) {
		int hash = 1315423911;
		for (int i = 0; i < str.length(); i++) {
			hash ^= ((hash << 5) + str.charAt(i) + (hash >> 2));
		}
		return (hash & 0x7FFFFFFF);
	}
	/* End Of JS Hash Function */
 
	/**
	 * PJW算法
	 */
	public static int PJWHash(String str) {
		int BitsInUnsignedInt = 32;
		int ThreeQuarters = (BitsInUnsignedInt * 3) / 4;
		int OneEighth = BitsInUnsignedInt / 8;
		int HighBits = 0xFFFFFFFF << (BitsInUnsignedInt - OneEighth);
		int hash = 0;
		int test = 0;
		for (int i = 0; i < str.length(); i++) {
			hash = (hash << OneEighth) + str.charAt(i);
 
			if ((test = hash & HighBits) != 0) {
				hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
			}
		}
		return (hash & 0x7FFFFFFF);
	}
	/* End Of P. J. Weinberger Hash Function */
 
	/**
	 * ELF算法
	 */
	public static int ELFHash(String str) {
		int hash = 0;
		int x = 0;
		for (int i = 0; i < str.length(); i++) {
			hash = (hash << 4) + str.charAt(i);
			if ((x = (int) (hash & 0xF0000000L)) != 0) {
				hash ^= (x >> 24);
				hash &= ~x;
			}
		}
		return (hash & 0x7FFFFFFF);
	}
	/* End Of ELF Hash Function */
 
	/**
	 * BKDR算法
	 */
	public static int BKDRHash(String str) {
		int seed = 131; // 31 131 1313 13131 131313 etc..
		int hash = 0;
		for (int i = 0; i < str.length(); i++) {
			hash = (hash * seed) + str.charAt(i);
		}
		return (hash & 0x7FFFFFFF);
	}
	/* End Of BKDR Hash Function */
 
	/**
	 * SDBM算法
	 */
	public static int SDBMHash(String str) {
		int hash = 0;
		for (int i = 0; i < str.length(); i++) {
			hash = str.charAt(i) + (hash << 6) + (hash << 16) - hash;
		}
		return (hash & 0x7FFFFFFF);
	}
	/* End Of SDBM Hash Function */
 
	/**
	 * DJB算法
	 */
	public static int DJBHash(String str) {
		int hash = 5381;
		for (int i = 0; i < str.length(); i++) {
			hash = ((hash << 5) + hash) + str.charAt(i);
		}
		return (hash & 0x7FFFFFFF);
	}
	/* End Of DJB Hash Function */
 
	/**
	 * DEK算法
	 */
	public static int DEKHash(String str) {
		int hash = str.length();
		for (int i = 0; i < str.length(); i++) {
			hash = ((hash << 5) ^ (hash >> 27)) ^ str.charAt(i);
		}
		return (hash & 0x7FFFFFFF);
	}
	/* End Of DEK Hash Function */
 
	/**
	 * AP算法
	 */
	public static int APHash(String str) {
		int hash = 0;
		for (int i = 0; i < str.length(); i++) {
			hash ^= ((i & 1) == 0) ? ((hash << 7) ^ str.charAt(i) ^ (hash >> 3))
					: (~((hash << 11) ^ str.charAt(i) ^ (hash >> 5)));
		}
		// return (hash & 0x7FFFFFFF);
		return hash;
	}
	/* End Of AP Hash Function */
 
	/**
	 * JAVA自己带的算法
	 */
	public static int java(String str) {
		int h = 0;
		int off = 0;
		int len = str.length();
		for (int i = 0; i < len; i++) {
			h = 31 * h + str.charAt(off++);
		}
		return h;
	}
 
	/**
	 * 混合hash算法,输出64位的值
	 */
	public static long mixHash(String str) {
		long hash = str.hashCode();
		hash <<= 32;
		hash |= FNVHash1(str);
		return hash;
	}
}

参考:

https://www.cnblogs.com/arkia123/archive/2012/10/30/2743850.html

https://www.jianshu.com/p/d0600b0d432d

https://www.cnblogs.com/caoke/p/10818900.html

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能体格

你的鼓将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值