二分法排序
(acwing 789)给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。
对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。
如果数组中不存在该元素,则返回 -1 -1。
输入格式
第一行包含整数 n 和 q,表示数组长度和询问个数。
第二行包含 n 个整数(均在 1∼10000 范围内),表示完整数组。
接下来 q 行,每行包含一个整数 k,表示一个询问元素。
输出格式
共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回 -1 -1。
数据范围:1≤n≤100000 1≤q≤10000 1≤k≤10000
分析:
用二分去查找元素要求数组的有序性或者拥有类似于有序的性质,对本题而言,一个包含重复元素的有序序列,要求输出某元素出现的起始位置和终止位置,翻译一下就是:在数组中查找某元素,找不到就输出-1,找到了就输出不小于该元素的最小位置和不大于该元素的最大位置。所以,需要写两个二分,一个是需要找到大于等于x的第一个数,另一个需要找到小于等于x的最后一个数。
查找不小于x的第一个位置:
while(l < r){
int mid = l + r >> 1;
if(temp[mid] >= p) r = mid;
else l = mid + 1;
} //循环最后 l == r
当中间点的值大于等于p时,让右边界更新为中间点,最终左边界和右边界会相等且为大于等于p的第一个元素的位置(若均比p小则为数组最后一个元素的位置)。
注意:中间点取值不能为l+r+1>>1,因为若r=l+1,且temp[r]>=p,则会使r不变,陷入死循环。
查找不大于x的最后一个位置:
while(l < r){
int mid = l + r + 1>> 1;
if(temp[mid] <= p) l = mid;
else r = mid - 1;
}
当中间点小于等于p,令左边界更新为中间点,最终左边界和右边界相等且对应元素为小于等于p的最后一个值,若均大于p,则为数组的第一个元素的位置。
注意:中间点取值不能为l+r>>1,因为若r=l+1,且temp[r]<=p,则会使l不变,陷入死循环。
下面为本题完整答案:
#include<iostream>
using namespace std;
int main()
{
const int N = 1e5;
int n, q, temp[N];
scanf("%d%d", &n, &q);
for(int i = 0; i < n; i++) scanf("%d", &temp[i]);
while(q--){
int p, i;
scanf("%d",&p);
int l = 0, r = n-1;
while(l < r){
int mid = l + r >> 1;
if(temp[mid] >= p) r = mid;
else l = mid + 1;
} //循环最后 l == r
if(temp[l] != p) printf("-1 -1\n");
else{
cout << l <<' ';
l = 0, r = n-1;
while(l < r){
int mid = l + r + 1>> 1;
if(temp[mid] <= p) l = mid;
else r = mid - 1;
}
cout << r << endl;
}
}
}