信号与系统知识点整理

如果需要更佳的阅读体验,请转至我的博客小站

LTI系统

基本信号分类

基本连续时间信号
  1. 指数信号

    x ( t ) = C e a t x(t) = Ce^{at} x(t)=Ceat

    特殊形式 : x ( t ) = e j ω 0 t 特殊形式:x(t) = e^{j\omega_0t} 特殊形式:x(t)=ejω0t

  2. 正弦信号
    x ( t ) = A cos ⁡ ( ω 0 + ϕ ) x(t) = A\cos(\omega_0 + \phi) x(t)=Acos(ω0+ϕ)

  3. 单位冲激信号
    { δ ( t ) = { 0 , t ≠ 0 ∞ , t = 0 ∫ − ∞ ∞ δ ( t ) d t = 1 \begin{cases}\delta(t) = \begin{cases}0,t\neq 0 \\ \infty,t = 0 \end{cases}\\ \\ \int^\infty_{-\infty} \delta(t)dt = 1 \end{cases} δ(t)={0,t=0,t=0δ(t)dt=1

  4. 单位阶跃信号
    u ( t ) = { 0 , t < 0 1 , t > 0 u(t) = \begin{cases}0,t < 0 \\ 1,t > 0\end{cases} u(t)={0,t<01,t>0

基本离散时间信号
  1. 指数序列
    x [ n ] = C a n x[n] = Ca^n x[n]=Can

    特殊形式 : x [ n ] = e j ω 0 t 特殊形式:x[n] = e^{j\omega_0t} 特殊形式:x[n]=ejω0t

  2. 正弦序列
    x [ n ] = A cos ⁡ ( ω 0 n + ϕ ) x[n] = A\cos(\omega_0n + \phi) x[n]=Acos(ω0n+ϕ)

  3. 单位脉冲序列
    δ [ n ] = { 0 , n ≠ 0 1 , n = 0 \delta[n] = \begin{cases}0,n \neq 0 \\ 1,n = 0 \end{cases} δ[n]={0,n=01,n=0

  4. 单位阶跃序列
    u [ n ] = { 0 , n < 0 1 , n ≥ 0 u[n] = \begin{cases}0,n < 0 \\ 1,n \geq 0 \end{cases} u[n]={0,n<01,n0

信号的基本变换

  1. 时移
    x ( t ) → x ( t − t 0 ) x(t) \rightarrow x(t - t_0) x(t)x(tt0)

  2. 尺度变换
    x ( t ) → x ( a t ) x(t) \rightarrow x(at) x(t)x(at)

  3. 反褶
    x ( t ) = x ( − t ) x(t) = x(-t) x(t)=x(t)

    信号的反褶是特殊的尺度变换,若 a < 0 a < 0 a<0 a ≠ − 1 a \neq -1 a=1,则信号 x ( a t ) x(at) x(at) 是由信号 x ( t ) x(t) x(t)同时进行尺度变换和反褶得到的

信号的性质

线性
  1. 齐次性

x ( t ) → y ( t ) x(t) \rightarrow y(t) x(t)y(t),则 k x ( t ) → k y ( t ) kx(t) \rightarrow ky(t) kx(t)ky(t)

  1. 可加性

x 1 ( t ) → y 1 ( t ) , x 2 ( t ) → y 2 ( t ) x_1(t) \rightarrow y_1(t),x_2(t) \rightarrow y_2(t) x1(t)y1(t),x2(t)y2(t),则 k 1 x 1 ( t ) + k 2 x 2 ( t ) = k 1 y 1 ( t ) + k 2 y 2 ( t ) k_1x_1(t) + k_2x_2(t) = k_1y_1(t) + k_2y_2(t) k1x1(t)+k2x2(t)=k1y1(t)+k2y2(t)

时不变性

x ( t ) → y ( t ) x(t) \rightarrow y(t) x(t)y(t),则 x ( t − t 0 ) → y ( t − t 0 ) x(t - t_0) \rightarrow y(t - t_0) x(tt0)y(tt0)

因果性

因果性是指系统的响应不出现在激励之前(只对自变量为时间的系统有意义)

即若 x ( t ) = 0 , t < t 0 x(t) = 0,t < t_0 x(t)=0,t<t0,则 y ( t ) = 0 , t < t 0 y(t) = 0,t < t_0 y(t)=0,t<t0

稳定性

稳定系是指对于有界的激励,系统的零状态响应也是有界的

即若 ∣ x ( t ∣ < ∞ |x(t| < \infty x(t< ,则 ,则 ,则 ∣ y ( t ) ∣ < ∞ |y(t)| < \infty y(t)<

总而言之,LTI系统有以下特性

x 1 ( t ) → y 1 ( t ) , x 2 ( t ) → y 2 ( t ) x_1(t) \rightarrow y_1(t),x_2(t) \rightarrow y_2(t) x1(t)y1(t),x2(t)y2(t),则有 k 1 x 1 ( t − t 1 ) + k 2 x 2 ( t − t 2 ) → k 1 y 1 ( t − t 1 ) + k 2 t 2 ( t − t 2 ) k_1x_1(t - t_1) + k_2x_2(t - t_2) \rightarrow k_1y_1(t - t_1) + k_2t_2(t - t_2) k1x1(tt1)+k2x2(tt2)k1y1(tt1)+k2t2(tt2)

信号的奇偶分量

偶信号: x ( t ) = x ( − t ) x(t) = x(-t) x(t)=x(t)

奇信号: x ( t ) = − x ( − t ) x(t) = -x(-t) x(t)=x(t)

任何信号都可被分解为一个奇信号和一个偶信号
奇信号 : O d { x ( t ) } = 1 / 2 [ x ( t ) − x ( − t ) ] 奇信号:Od\{x(t)\} = 1 / 2[x(t) - x(-t)] 奇信号:Od{x(t)}=1/2[x(t)x(t)]

偶信号 : E v { x ( t ) } = 1 / 2 [ x ( t ) + x ( − t ) ] 偶信号:Ev\{x(t)\} = 1 / 2[x(t) + x(-t)] 偶信号:Ev{x(t)}=1/2[x(t)+x(t)]

离散时间LTI系统

离散时间LTI系统对于任意序列 x [ n ] x[n] x[n]的响应为 y [ n ] = ∑ k = − ∞ ∞ x [ k ] h [ n − k ] y[n] = \sum^{\infty}_{k = -\infty}x[k]h[n - k] y[n]=k=x[k]h[nk],其中 h [ t ] h[t] h[t]为单位冲激响应

连续时间LTI系统

连续时间LTI系统对于任意序列 x [ n ] x[n] x[n]的响应为 y ( t ) = ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ y(t) = \int^{\infty}_{-\infty}x(\tau)h(t - \tau)d\tau y(t)=x(τ)h(tτ)dτ

卷积的性质

  1. 交换律
    x ( t ) ∗ h ( t ) = h ( t ) ∗ x ( t ) x(t) * h(t) = h(t) * x(t) x(t)h(t)=h(t)x(t)

  2. 分配律
    x ( t ) ∗ [ h 1 ( t ) + h 2 ( t ) ] = x ( t ) ∗ h 1 ( t ) + x ( t ) ∗ h 2 ( t ) x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t) x(t)[h1(t)+h2(t)]=x(t)h1(t)+x(t)h2(t)

  3. 结合律

x ( t ) ∗ [ h 1 ( t ) ∗ h 2 ( t ) ] = [ x ( t ) ∗ h 1 ( t ) ] ∗ h 2 ( t ) x(t) * [h_1(t) * h_2(t)] = [x(t) * h_1(t)] * h_2(t) x(t)[h1(t)h2(t)]=[x(t)h1(t)]h2(t)

  1. 求导

x ′ ( t ) ∗ h ( t ) = x ( t ) ∗ h ′ ( t ) x'(t) * h(t) = x(t) * h'(t) x(t)h(t)=x(t)h(t)

  1. 延时叠加性
    x ( t − t 1 ) ∗ h ( t − t 2 ) = y ( t − t 1 − t 2 ) x(t - t_1) * h(t - t_2) = y(t - t_1 - t_2) x(tt1)h(tt2)=y(tt1t2)

LTI系统的性质

有记忆和无记忆性

若一个系统在任何时刻的输出仅与同一时刻的输入值有关,它就是无记忆的,反之则是有记忆的

可逆性

对于一个LTI系统,仅当存在一个逆系统,其与原系统级联后所产生的输出等于第一个系统的输入时,这个系统才是可逆的

给定一个LTI系统,其冲激响应为 h ( t ) h(t) h(t),逆系统的冲激响应为 h 1 ( t ) h_1(t) h1(t),则有 h ( t ) ∗ h 1 ( t ) = δ ( t ) h(t) * h_1(t) = \delta(t) h(t)h1(t)=δ(t)

因果性

系统的因果性就是在输入事件发生之前,因果系统不会产生任何响应,这等价于初始松弛条件

因果性和初始松弛条件的等价性仅适合LTI系统

稳定性

如果一个系统对于每一个有界的输入,输出都能是有界的,则可以说明该系统是稳定的

LTI系统稳定的充要条件是单位冲激响应绝对可积(和)
∫ − ∞ ∞ ∣ h ( τ ) ∣ d τ < ∞ ∑ k = − ∞ ∞ ∣ h ( k ) ∣ < ∞ \int^{\infty}_{-\infty}|h(\tau)|d\tau < \infty \\ \\ \sum^{\infty}_{k = -\infty}|h(k)| < \infty h(τ)dτ<k=h(k)<

单位阶跃响应

一个LTI系统的单位阶跃响应是单位冲激响应的积分(求和)

根据线性和时不变性易证

反之,我们也可以说一个LTI系统的单位冲激响应是单位阶跃响应的一阶导数(一阶差分)

用微分方程描述LTI系统

一个N阶常系数微分方程可以表示为
∑ k = 0 N a k d k y ( t ) d t k = ∑ k = 0 M b k d k x ( t ) d t k \sum^{N}_{k = 0}a_k\frac{d^ky(t)}{dt^k} = \sum^{M}_{k = 0}b_k\frac{d^kx(t)}{dt^k} k=0Nakdtkdky(t)=k=0Mbkdtkdkx(t)
对于一个给定的 x ( t ) x(t) x(t),方程的完全解为
y ( t ) = y p ( t ) + y h ( t ) y(t) = y_p(t) + y_h(t) y(t)=yp(t)+yh(t)
其中 y p ( t ) y_p(t) yp(t)是特解, y h ( t ) y_h(t) yh(t)是齐次解

此处不赘述解微分方程的方法

上述微分方程只涉及三种基本运算:相加,乘以系数和微分,所以一个连续时间LTI系统可以通过三种基本单元:相加器,标量乘法器和微分器(常用积分器替代)的互联来表示

用差分方程描述LTI系统

一个N阶常系数的差分方程可表示为
∑ k = 0 N a k y [ n − k ] = ∑ k = 0 M b k x [ n − k ] , a k , b k 为实常数 \sum^{N}_{k = 0}a_ky[n - k] = \sum^{M}_{k = 0}b_kx[n - k],a_k,b_k为实常数 k=0Naky[nk]=k=0Mbkx[nk],ak,bk为实常数
如果上述差分方程描述的系统是初始松弛的,则该系统是因果的

可以通过将差分方程写成以下形式来方便求解
y [ n ] = 1 a 0 { ∑ k = 0 M b k δ [ n − k ] − ∑ k = 1 N a k h [ n − k ] } y[n] = \frac{1}{a_0}\{\sum^{M}_{k = 0}b_k\delta[n - k] - \sum^{N}_{k = 1}a_kh[n - k]\} y[n]=a01{k=0Mbkδ[nk]k=1Nakh[nk]}

上述差分方程也只涉及到三种基本运算:相加,乘以系数和延迟,所以一个离散时间LTI系统可以通过三种基本单元:相加器,标量乘法器和单位延迟器的互联来表示

奇异函数

单位冲激信号的基本特性

∫ − ∞ ∞ x ( t ) δ ( t − t 0 ) d t = ∫ − ∞ ∞ x ( t + t 0 ) δ ( t ) d t = x ( t 0 ) ∫ b a φ ( t ) δ ( t ) d t = { φ ( 0 ) , a b < 0 0 , a b > 0 无定义 , a b = 0 x ( t ) ∗ δ ( t − t 0 ) = x ( t − t 0 ) δ ( t − t 1 ) ∗ δ ( t − t 2 ) = δ ( t − t 1 − t 2 ) \int^{\infty}_{-\infty}x(t)\delta(t - t_0)dt = \int^{\infty}_{-\infty}x(t + t_0)\delta(t)dt = x(t_0) \\ \\\int^{a}_{b}\varphi(t)\delta(t)dt = \begin{cases}\varphi(0),ab < 0\\\\0,ab > 0\\\\无定义,ab = 0\end{cases} \\ \\x(t) * \delta(t - t_0) = x(t - t_0) \\\\ \delta(t - t_1) * \delta(t - t_2) = \delta(t - t_1 - t_2) x(t)δ(tt0)dt=x(t+t0)δ(t)dt=x(t0)baφ(t)δ(t)dt= φ(0),ab<00,ab>0无定义,ab=0x(t)δ(tt0)=x(tt0)δ(tt1)δ(tt2)=δ(tt1t2)

单位冲激偶及其特性

单位冲激偶的符号表示是 δ ′ ( t ) \delta'(t) δ(t)

有定义如下
u k ( t ) = t k − 1 ( k − 1 ) ! u ( t ) u_k(t) = \frac{t^{k - 1}}{(k - 1)!}u(t) uk(t)=(k1)!tk1u(t)
有时候我们也会利用以下等式表示单位冲激和单位阶跃信号
δ ( t ) = u 0 ( t ) u ( t ) = u − 1 ( t ) \delta(t) = u_0(t) \\ u(t) = u_{-1}(t) δ(t)=u0(t)u(t)=u1(t)

有如下定理

u − k ( t ) = u ( t ) ∗ u ( t ) ∗ ⋯ ∗ u ( t ) ⏟ k 次 u k ( t ) ∗ u r ( t ) = u k + r ( t ) u_{-k}(t) = \underbrace{u(t) * u(t) * \dots * u(t)}_{k次} \\ u_k(t) * u_r(t) = u_{k + r}(t) uk(t)=k u(t)u(t)u(t)uk(t)ur(t)=uk+r(t)

周期信号的傅里叶级数

LTI系统对复指数信号的响应

对于LTI系统,当输入为 x ( t ) = e s t x(t) = e^{st} x(t)=est时,输出为
y ( t ) = H ( s ) e s t y(t) = H(s)e^{st} y(t)=H(s)est
其中 H ( s ) H(s) H(s)为复振幅因子,和单位冲激响应的关系可表示为
H ( s ) = ∫ − ∞ ∞ h ( τ ) e − s τ d τ H(s) = \int^{\infty}_{-\infty}h(\tau)e^{-s\tau}d\tau H(s)=h(τ)esτdτ
或者是
H ( s ) = ∑ − ∞ ∞ h [ k ] z − k H(s) = \sum^{\infty}_{-\infty}h[k]z^{-k} H(s)=h[k]zk
如果系统对于一个信号的输出响应仅仅是一个常数乘以输入,则称该信号为系统的特征函数,而幅度因子则称为系统的特征值

连续时间周期信号的傅里叶级数表示

对于周期为 T T T的信号 x ( t ) x(t) x(t),可以被分解为
x ( t ) = ∑ k = − ∞ ∞ a k e j k ω 0 t = ∑ k = − ∞ ∞ a k e j k 2 π T t x(t) = \sum^{\infty}_{k = -\infty}a_ke^{jk\omega_0t} = \sum^{\infty}_{k = -\infty}a_ke^{jk\frac{2\pi}{T}t} x(t)=k=akejkω0t=k=akejkT2πt
其中 a k a_k ak被称为 x ( t ) x(t) x(t)的频谱系数,可以通过下列式子求出
a k = 1 T ∫ T x ( t ) e − j k ω 0 t d t = 1 T ∫ T x ( t ) e − j k 2 π T t d t a_k = \frac{1}{T}\int_Tx(t)e^{-jk\omega_0t}dt = \frac{1}{T}\int_Tx(t)e^{-jk\frac{2\pi}{T}t}dt ak=T1Tx(t)ejkω0tdt=T1Tx(t)ejkT2πtdt
k = 0 k = 0 k=0时,求取的值为 x ( t ) x(t) x(t)的一个周期的平均值(直流分量)

使用傅里叶级数的前提是满足Dirichlet条件,即

  1. 在任何周期内, x ( t ) x(t) x(t)都绝对可积

  2. 在任何有限区间内, x ( t ) x(t) x(t)都具有有限个最大值和最小值

  3. 在任何有限区间内, x ( t ) x(t) x(t)都具有有限个不连续点,并且每个不连续点都为有限值(即有限个第一类间断点)

Dirichlet条件只是充分条件,而非必要条件

也有三角型傅里叶级数的表示方法
x ( t ) = a 0 + 2 ∑ k = 1 ∞ ( B k cos ⁡ k ω 0 t − C k sin ⁡ k ω 0 t ) x(t) = a_0 + 2\sum^{\infty}_{k = 1}(B_k\cos k\omega_0t - C_k\sin k\omega_0t) x(t)=a0+2k=1(Bkcoskω0tCksinkω0t)
其中, B k , C k B_k,C_k Bk,Ck和频谱系数的关系是 a k = B k + j C k a_k = B_k + jC_k ak=Bk+jCk

也可以表示为谐波类型的级数
x ( t ) = a 0 + 2 ∑ k = 1 ∞ A k cos ⁡ ( k ω 0 t + θ k ) x(t) = a_0 + 2\sum^{\infty}_{k = 1}A_k\cos(k\omega_0t + \theta_k) x(t)=a0+2k=1Akcos(kω0t+θk)
其中 A k , θ k A_k,\theta_k Ak,θk与频谱系数的关系为 a k = A k e j θ k a_k = A_ke^{j\theta_k} ak=Akejθk

连续时间傅里叶级数的性质

x ( t ) ⟷ F S a k , y ( t ) ⟷ F S b k x(t) \stackrel{FS}{\longleftrightarrow} a_k,y(t) \stackrel{FS}{\longleftrightarrow} b_k x(t)FSak,y(t)FSbk

线性

z ( t ) = A x ( t ) + B y ( t ) ⟷ F S c k = A a k + B b k z(t) = Ax(t) + By(t) \stackrel{FS}{\longleftrightarrow} c_k = Aa_k + Bb_k z(t)=Ax(t)+By(t)FSck=Aak+Bbk

时移性质

x ( t − t 0 ) ⟷ F S b k = e − j k ω 0 t 0 a k x(t - t_0) \stackrel{FS}{\longleftrightarrow} b_k = e^{-jk\omega_0t_0}a_k x(tt0)FSbk=ejkω0t0ak

时间反转

x ( − t ) ⟷ F S a − k x(-t) \stackrel{FS}{\longleftrightarrow} a_{-k} x(t)FSak

尺度变换

若有
x ( t ) = ∑ k = − ∞ ∞ a k e j k ω 0 t x(t) = \sum^{\infty}_{k = -\infty}a_ke^{jk\omega_0t} x(t)=k=akejkω0t
则有
x ( a t ) = ∑ k = − ∞ ∞ a k e j k ( a ω 0 ) t x(at) = \sum^{\infty}_{k = -\infty}a_ke^{jk(a\omega_0)t} x(at)=k=akejk(aω0)t

相乘

x ( t ) y ( t ) ⟷ F S h k = ∑ l = − ∞ ∞ a l b k − l x(t)y(t) \stackrel{FS}{\longleftrightarrow} h_k = \sum^{\infty}_{l = -\infty}a_lb_{k - l} x(t)y(t)FShk=l=albkl

共轭对称性

x ∗ ( t ) ⟷ F S a − k ∗ { x ( t ) = x ∗ ( t ) ⟹ a k = a − k ∗ , ∣ a k ∣ = ∣ a − k ∣ , E v { x ( t ) } ⟷ F S R e { a k } , O d { x ( t ) } ⟷ F S j I m { a k } x ( t ) = x ∗ ( t ) , x ( t ) = x ( − t ) ⟹ a k = a − k , a k = a k ∗ x ( t ) = x ∗ ( t ) , x ( t ) = − x ( − t ) ⟹ a 0 = 0 , a − k = − a k , a − k = a k ∗ x^*(t) \stackrel{FS}{\longleftrightarrow} a^*_{-k} \\\\ \begin{cases} x(t) = x^*(t) \Longrightarrow a_k = a^*_{-k},|a_k| = |a_{-k}|,Ev\{x(t)\} \stackrel{FS}{\longleftrightarrow} Re\{a_k\},Od\{x(t)\} \stackrel{FS}{\longleftrightarrow} jIm\{a_k\} \\ \\x(t) = x^*(t),x(t) = x(-t) \Longrightarrow a_k = a_{-k},a_k = a^*_k \\ \\x(t) = x^*(t),x(t) = -x(-t) \Longrightarrow a_0 = 0,a_{-k} = -a_k,a_{-k} = a^*_k\end{cases} x(t)FSak x(t)=x(t)ak=ak,ak=ak,Ev{x(t)}FSRe{ak},Od{x(t)}FSjIm{ak}x(t)=x(t),x(t)=x(t)ak=ak,ak=akx(t)=x(t),x(t)=x(t)a0=0,ak=ak,ak=ak

帕斯瓦尔定理

1 T ∫ T ∣ x ( t ) ∣ 2 d t = ∑ k = − ∞ ∞ ∣ a k ∣ 2 \frac{1}{T}\int_T{|x(t)|}^2dt = \sum^{\infty}_{k = -\infty}{|a_k|}^2 T1Tx(t)2dt=k=ak2

离散时间傅里叶级数的表示

对于一个基波周期为 N N N的周期序列 x [ n ] x[n] x[n]而言,离散傅里叶级数可以表示为

x [ n ] = ∑ k = < N > x [ n ] e − j k ω 0 n x[n] = \sum_{k = <N>}x[n]e^{-jk\omega_0n} x[n]=k=<N>x[n]ejkω0n

其中 k = < N > k = <N> k=<N>的意思是从任意 k k k值开始向后算 N N N个数字(即离散序列的一个周期)

由于离散傅里叶级数的项是有限的,所以不需要考虑收敛问题

离散傅里叶级数性质

周期性,线性,时间反转,共轭对称,相乘和帕斯瓦尔定理不赘述,和连续时间基本一致

若有 x [ n ] ⟷ F S a k , y [ n ] ⟷ F S b k x[n] \stackrel{FS}{\longleftrightarrow} a_k,y[n] \stackrel{FS}{\longleftrightarrow} b_k x[n]FSak,y[n]FSbk

时移性质

x [ n − n 0 ] ⟷ F S b k = a k e − j k ω 0 n 0 , ∣ b k ∣ = ∣ a k ∣ x[n - n_0] \stackrel{FS}{\longleftrightarrow} b_k = a_ke^{-jk\omega_0n_0},|b_k| = |a_k| x[nn0]FSbk=akejkω0n0,bk=ak

频移性质

e j M 2 π N n x [ n ] ⟷ F S a k − M e^{jM\frac{2\pi}{N}n}x[n] \stackrel{FS}{\longleftrightarrow} a_{k - M} ejMN2πnx[n]FSakM

时域尺度变换

x ( m ) [ n ] = { x [ n m ] , n 是 m 的倍数 0 , n 不是 m 的倍数 ⟷ F S 1 m a k x_{(m)}[n] = \begin{cases} x[\frac{n}{m}],n是m的倍数\\ \\ 0,n不是m的倍数 \end{cases} \stackrel{FS}{\longleftrightarrow} \frac{1}{m}a_k x(m)[n]= x[mn],nm的倍数0,n不是m的倍数FSm1ak

其中 x ( m ) x_{(m)} x(m) 1 m a k \frac{1}{m}a_k m1ak的周期均为 m N mN mN

周期卷积

∑ r = < N > x [ r ] y [ n − r ] ⟷ F S N a k b k \sum_{r = <N>}x[r]y[n - r] \stackrel{FS}{\longleftrightarrow} Na_kb_k r=<N>x[r]y[nr]FSNakbk

频域相乘 ⟺ \Longleftrightarrow 时域相卷,频域相卷 ⟺ \Longleftrightarrow 时域相乘

一阶差分

x [ n ] − x [ n − 1 ] ⟷ F S ( 1 − e − j k 2 π N ) a k x[n] - x[n - 1] \stackrel{FS}{\longleftrightarrow} (1 - e^{-jk\frac{2\pi}{N}})a_k x[n]x[n1]FS(1ejkN2π)ak

求和

∑ k = − ∞ n x [ k ] ⟷ F S a k 1 − e − j k 2 π N \sum^{n}_{k = -\infty}x[k] \stackrel{FS}{\longleftrightarrow} \frac{a_k}{1 - e^{-jk\frac{2\pi}{N}}} k=nx[k]FS1ejkN2πak

傅里叶级数与LTI系统

s s s为一般复数时, H ( s ) H(s) H(s)称为该系统的系统函数;当 s = j ω s = j\omega s=时, H ( s ) = H ( j ω ) H(s) = H(j\omega) H(s)=H(),此时的系统函数称为该系统的频率响应

H ( j ω ) = ∫ − ∞ ∞ h ( t ) e − j ω t d t H ( e j ω ) = ∑ n = − ∞ ∞ h [ n ] e − j ω n H(j\omega) = \int^\infty_{-\infty}h(t)e^{-j\omega t}dt \\ H(e^{j\omega}) = \sum^{\infty}_{n = -\infty}h[n]e^{-j\omega n} H()=h(t)etdtH(e)=n=h[n]ejωn
对于可以被分解为傅里叶级数的周期信号(无论连续还是离散),其LTI系统的响应都可以被分解为如下形式
y ( t ) = ∑ k = − ∞ ∞ a k H ( e j k ω 0 ) e j k ω 0 t y [ n ] = ∑ k = < N > a k H ( e j k w π N n ) e j k 2 π N n y(t) = \sum^{\infty}_{k = -\infty}a_kH(e^{jk\omega_0})e^{jk\omega_0t} \\ y[n] = \sum_{k = <N>}a_kH(e^{jk\frac{w\pi}{N}n})e^{jk\frac{2\pi}{N}n} y(t)=k=akH(ejkω0)ejkω0ty[n]=k=<N>akH(ejkNwπn)ejkN2πn

连续时间傅里叶变换

傅里叶变换

傅里叶变换
X ( j ω ) = F { x ( t ) } = ∫ − ∞ ∞ x ( t ) e − j ω t d t X(j\omega) = \mathscr{F}\{x(t)\} = \int^{\infty}_{-\infty}x(t)e^{-j\omega t}dt X()=F{x(t)}=x(t)etdt
逆傅里叶变换
x ( t ) = F − 1 { X ( j ω ) } = 1 2 π ∫ − ∞ ∞ X ( j ω ) e j ω t d ω x(t) = {\mathscr{F}}^{-1}\{X(j\omega)\} = \frac{1}{2\pi}\int^{\infty}_{-\infty}X(j\omega)e^{j\omega t}d\omega x(t)=F1{X()}=2π1X()etdω
一个非周期信号 x ( t ) x(t) x(t)的傅里叶变换 X ( j ω ) X(j\omega) X()被称为信号的频谱,一般情况下,可表示为如下形式
X ( j ω ) = ∣ X ( j ω ) ∣ e j φ ( ω ) X(j\omega) = |X(j\omega)|e^{j\varphi(\omega)} X()=X()ejφ(ω)
其中 ∣ X ( j ω ) ∣ |X(j\omega)| X()称为幅度谱, φ ( t ) \varphi(t) φ(t)被称为相位谱

傅里叶变换收敛的条件也和傅里叶级数一样

连续时间傅里叶变换的性质

线性,时移,频移,共轭对称性质和帕斯瓦尔定理不做赘述,和傅里叶级数基本一致

若有 x ( t ) ⟷ F T X ( j ω ) , x 1 ( t ) ⟷ F T X 1 ( j ω ) x 2 ( t ) ⟷ F T X 2 ( j ω ) x(t) \stackrel{FT}{\longleftrightarrow} X(j\omega),x_1(t) \stackrel{FT}{\longleftrightarrow} X_1(j\omega) x_2(t) \stackrel{FT}{\longleftrightarrow} X_2(j\omega) x(t)FTX(),x1(t)FTX1()x2(t)FTX2()

时域微分积分性质

d x ( t ) d t ⟷ F T j ω X ( j ω ) ∫ − ∞ t x ( τ ) d τ ⟷ F T 1 j ω X ( j ω ) + π X ( 0 ) δ ( ω ) \frac{dx(t)}{dt} \stackrel{FT}{\longleftrightarrow} j\omega X(j\omega) \\ \int^t_{-\infty}x(\tau)d\tau \stackrel{FT}{\longleftrightarrow} \frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega) dtdx(t)FTX()tx(τ)dτFT1X()+πX(0)δ(ω)

频域微分积分性质

( − j t ) x ( t ) ⟷ F T d X ( j ω ) d ω − 1 j t x ( t ) + π x ( 0 ) δ ( t ) ⟷ F T ∫ − ∞ ∞ X ( j Ω ) d Ω (-jt)x(t) \stackrel{FT}{\longleftrightarrow} \frac{dX(j\omega)}{d\omega} \\ -\frac{1}{jt}x(t) + \pi x(0)\delta(t) \stackrel{FT}{\longleftrightarrow} \int^\infty_{-\infty}X(j\Omega)d\Omega (jt)x(t)FTdωdX()jt1x(t)+πx(0)δ(t)FTX(jΩ)dΩ

尺度变换

x ( a t ) ⟷ F T 1 ∣ a ∣ X ( j ω a ) x(at) \stackrel{FT}{\longleftrightarrow} \frac{1}{|a|}X(\frac{j\omega}{a}) x(at)FTa1X(a)

对偶性

X ( j t ) ⟷ F T 2 π x ( − ω ) X(jt) \stackrel{FT}{\longleftrightarrow} 2\pi x(-\omega) X(jt)FT2πx(ω)

卷积相乘性

x 1 ( t ) ∗ x 2 ( t ) ⟷ F T X 1 ( j ω ) X 2 ( j ω ) x 1 ( t ) x 2 ( t ) ⟷ F T 1 2 π [ X 1 ( j ω ) ∗ X 2 ( j ω ) ] x_1(t) \ast x_2(t) \stackrel{FT}{\longleftrightarrow} X_1(j\omega)X_2(j\omega) \\ x_1(t)x_2(t) \stackrel{FT}{\longleftrightarrow} \frac{1}{2\pi}[X_1(j\omega) \ast X_2(j\omega)] x1(t)x2(t)FTX1()X2()x1(t)x2(t)FT2π1[X1()X2()]

连续时间LTI系统的频率响应

频率响应函数

一个连续时间LTI系统的输出可以表示为
y ( t ) = x ( t ) ∗ h ( t ) y(t) = x(t) \ast h(t) y(t)=x(t)h(t)
根据卷积相乘性可得
Y ( j ω ) = X ( j ω ) H ( j ω ) ⟹ H ( j ω ) = Y ( j ω ) X ( j ω ) Y(j\omega) = X(j\omega)H(j\omega) \Longrightarrow H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} Y()=X()H()H()=X()Y()
其中, H ( j ω ) H(j\omega) H()称为系统的频率响应函数
H ( j ω ) = ∣ H ( j ω ) ∣ e j φ H ( ω ) H(j\omega) = |H(j\omega)|e^{j\varphi_H(\omega)} H()=H()ejφH(ω)
∣ H ( j ω ) ∣ |H(j\omega)| H()称为系统的幅频响应, φ H ( ω ) \varphi_H(\omega) φH(ω)称为系统的相频响应

只有稳定系统才存在频率响应

若LTI系统满足以下的线性常系数微分方程
∑ k = 0 N a k d k y ( t ) d t k = ∑ k = 0 M b k d k x ( t ) d t k \sum^N_{k = 0}a_k\frac{d^ky(t)}{dt^k} = \sum^M_{k = 0}b_k\frac{d^kx(t)}{dt^k} k=0Nakdtkdky(t)=k=0Mbkdtkdkx(t)
则该系统的频率响应为
H ( j ω ) = ∑ k = 0 M b k ( j ω ) k ∑ k = 0 N a k ( j ω ) k H(j\omega) = \frac{\sum^M_{k = 0}b_k{(j\omega)}^k}{\sum^N_{k = 0}a_k{(j\omega)}^k} H()=k=0Nak()kk=0Mbk()k

无失真传输

一个确定的信号经过系统之后,时域波形无改变,仅幅度产生变换,时间上有所延迟

即输出为
y ( t ) = K x ( t − t d ) y(t) = Kx(t - t_d) y(t)=Kx(ttd)
易得无失真系统必须满足以下条件
∣ H ( j ω ) ∣ = K , φ H ( ω ) = − ω t d |H(j\omega)| = K,\varphi_H(\omega) = -\omega t_d H()=K,φH(ω)=ωtd
也就是说幅频响应必须是一个和频率无关的常数,相频响应必须是频率的线性函数(群延迟)

滤波

频率成形滤波器

用于改变频谱的形状的LTI系统,常见的有微分滤波器,常用于图像边缘的增晰

频率选择性滤波器
  1. 理想低通滤波器
    H ( j ω ) = { 1 , ∣ ω ∣ < ω c 0 , ∣ ω ∣ > ω c H(j\omega) = \begin{cases} 1,|\omega| < \omega_c \\ \\ 0,|\omega| > \omega_c \end{cases} H()= 1,ω<ωc0,ω>ωc

  2. 理想高通滤波器

    H ( j ω ) = { 0 , ∣ ω ∣ < ω c 1 , ∣ ω ∣ > ω c H(j\omega) = \begin{cases} 0,|\omega| < \omega_c \\ \\ 1,|\omega| > \omega_c \end{cases} H()= 0,ω<ωc1,ω>ωc

  3. 理想带通滤波器

    H ( j ω ) = { 1 , ω c 1 < ∣ ω ∣ < ω c 2 0 , e l s e H(j\omega) = \begin{cases} 1,\omega_{c_1} < |\omega| < \omega_{c_2} \\ \\ 0, else \end{cases} H()= 1,ωc1<ω<ωc20,else

  4. 理想带阻滤波器

    H ( j ω ) = { 0 , ω c 1 < ∣ ω ∣ < ω c 2 1 , e l s e H(j\omega) = \begin{cases} 0,\omega_{c_1} < |\omega| < \omega_{c_2} \\ \\ 1, else \end{cases} H()= 0,ωc1<ω<ωc21,else

带宽

滤波器带宽

理想低通滤波器的绝对带宽是它的截止频率,称为绝对带宽

理想带通滤波器的绝对带宽是 ω c 2 − ω c 1 \omega_{c_2} - \omega_{c_1} ωc2ωc1

高通和带阻滤波器没有带宽的定义

而对于实际的滤波器,常见的带宽定义是3dB带宽

一般是指幅度谱 H ( j ω ) H(j\omega) H()下降3dB的宽度

信号带宽

信号也有3dB带宽,也有有限带宽信号,即 ∣ X ( j ω ) ∣ = 0 , ∣ ω ∣ > ω m |X(j\omega)| = 0,|\omega| > \omega_m X()=0,ω>ωm,则为有限带宽信号,带宽为 ω m \omega_m ωm

离散时间傅里叶变换

信号与系统不考,暂略,等我学完DSP再补教程

采样

冲激串采样

对于一个连续信号 x ( t ) x(t) x(t),若用冲激串 p ( t ) = ∑ n = − ∞ ∞ δ ( t − n T ) p(t) = \sum^\infty_{n = -\infty}\delta(t - nT) p(t)=n=δ(tnT)对其进行采样,则时域结果为
x p ( t ) = x ( t ) ⋅ p ( t ) x_p(t) = x(t) \cdot p(t) xp(t)=x(t)p(t)
在频域内则有
X p ( j ω ) = 1 T ∑ k = − ∞ ∞ X ( j ( ω − k ω s ) ) ω s = 2 π T X_p(j\omega) = \frac{1}{T}\sum^\infty_{k = -\infty}X(j(\omega - k\omega_s)) \\ \omega_s = \frac{2\pi}{T} Xp()=T1k=X(j(ωkωs))ωs=T2π

采样定理

x ( t ) x(t) x(t)是一个带限信号,在 ∣ ω ∣ > ω M |\omega| > \omega_M ω>ωM时, X ( j ω ) = 0 X(j\omega) = 0 X()=0,如果采样频率大于原信号频率的两倍 ω s > 2 ω M \omega_s > 2\omega_M ωs>2ωM,那么 x ( t ) x(t) x(t)就可以被样本唯一的还原(重建)出来

利用内插由采样点重建信号

如果在采样过程中没有出现频谱的混叠现象,则可以让 x p ( t ) x_p(t) xp(t)通过一个截至频率为 ω c = ω s 2 \omega_c = \frac{\omega_s}{2} ωc=2ωs的理想低通滤波器,就可以无失真的恢复原始信号

内插公式如下所示
x r ( t ) = ∑ x ( n T ) ω c T π ⋅ sin ⁡ [ ω c ( t − n T ) ] ω c ( t − n T ) x_r(t) = \sum x(nT)\frac{\omega_cT}{\pi} \cdot \frac{\sin[\omega_c(t - nT)]}{\omega_c(t - nT)} xr(t)=x(nT)πωcTωc(tnT)sin[ωc(tnT)]
其中 ω c = ω s 2 \omega_c = \frac{\omega_s}{2} ωc=2ωs

拉普拉斯变换

定义

对于连续时间信号 x ( t ) x(t) x(t),其双边拉普拉斯变换定义为
X ( s ) = ∫ − ∞ ∞ x ( t ) e − s t d t X(s) = \int^\infty_{-\infty}x(t)e^{-st}dt X(s)=x(t)estdt
其中
s = σ + j ω s = \sigma + j\omega s=σ+

σ = 0 \sigma = 0 σ=0,则复平面的虚轴上的拉普拉斯变换就是连续时间的傅里叶变换

收敛域

能够使 ∫ − ∞ ∞ x ( t ) e − s t d t \int^\infty_{-\infty}x(t)e^{-st}dt x(t)estdt收敛的所有 s s s值的集合,称为拉普拉斯变换的收敛域

  1. 绝对可积的信号的收敛域为整个 s s s平面

  2. 右边信号的收敛域是 s s s平面的某个右半平面

  3. 左边信号的收敛域是 s s s平面的某个左半平面

  4. 双边信号的收敛域可能是一个平行于虚轴的带状区域,也可能收敛域不存在

拉普拉斯变换还包括以下一些性质

  1. 收敛域不包含极点(可以包含零点)
  2. 如果拉普拉斯变换 X ( s ) X(s) X(s)是有理数,则收敛域的边界可以由极点确定

拉普拉斯逆变换

进行逆变换时,通常先根据收敛域判断 x ( t ) x(t) x(t)的类型,然后再进行计算

通常我们使用部分分式展开法

先将 X ( s ) X(s) X(s)展开为
X ( s ) = ∑ i = 1 m A i s + a i X(s) = \sum^m_{i = 1}\frac{A_i}{s + a_i} X(s)=i=1ms+aiAi
然后利用变换对
A i e − a i t u ( t ) ⟷ L T A i s + a i A_ie^{-a_it}u(t) \stackrel{LT}{\longleftrightarrow} \frac{A_i}{s + a_i} Aieaitu(t)LTs+aiAi
对每一项进行逆变换,就可以得到 x ( t ) x(t) x(t)

拉普拉斯变换的性质

x ( t ) ⟷ L T X ( s ) , R O C = R ; x 1 ( t ) ⟷ L T X 1 ( s ) , R O C = R 1 ; x 2 ( t ) ⟷ L T X 2 ( s ) , R O C = R 2 x(t) \stackrel{LT}{\longleftrightarrow} X(s),ROC = R;x_1(t) \stackrel{LT}{\longleftrightarrow} X_1(s),ROC = R_1;x_2(t) \stackrel{LT}{\longleftrightarrow} X_2(s),ROC = R_2 x(t)LTX(s),ROC=R;x1(t)LTX1(s),ROC=R1;x2(t)LTX2(s),ROC=R2

线性

a x 1 ( t ) + b x 2 ( t ) ⟷ L T a X 1 ( s ) + b X 2 ( s ) , R O C 包含 R 1 ∩ R 2 ax_1(t) + bx_2(t) \stackrel{LT}{\longleftrightarrow} aX_1(s) + bX_2(s),ROC包含R1\cap R2 ax1(t)+bx2(t)LTaX1(s)+bX2(s),ROC包含R1R2

时移频移性

x ( t − t 0 ) ⟷ L T e − s t 0 X ( s ) , R O C = R e s 0 t x ( t ) ⟷ L T X ( s − s 0 ) , R O C = R + R e { s 0 } x(t - t_0) \stackrel{LT}{\longleftrightarrow} e^{-st_0}X(s),ROC = R \\ e^{s_0t}x(t) \stackrel{LT}{\longleftrightarrow} X(s - s_0),ROC = R + Re\{s_0\} x(tt0)LTest0X(s),ROC=Res0tx(t)LTX(ss0),ROC=R+Re{s0}

尺度变换

x ( a t ) ⟷ L T 1 ∣ a ∣ X ( s a ) , R O C = a R x(at) \stackrel{LT}{\longleftrightarrow} \frac{1}{|a|}X(\frac{s}{a}),ROC = aR x(at)LTa1X(as),ROC=aR

共轭性质

x ∗ ( t ) ⟷ L T X ∗ ( s ∗ ) , R O C = R x^\ast(t) \stackrel{LT}{\longleftrightarrow} X^\ast(s^\ast),ROC = R x(t)LTX(s),ROC=R

时域卷积性质

x 1 ( t ) ∗ x 2 ( t ) ⟷ L T X 1 ( s ) ⋅ X 2 ( s ) , R O C 包含 R 1 ∩ R 2 x_1(t) \ast x_2(t) \stackrel{LT}{\longleftrightarrow} X_1(s) \cdot X_2(s),ROC包含R_1\cap R_2 x1(t)x2(t)LTX1(s)X2(s),ROC包含R1R2

时域积分微分性质

∫ − ∞ t x ( τ ) d τ ⟷ L T X ( s ) s , R O C 包含 R ∩ { R e { s } > 0 } d x ( t ) d t ⟷ L T s X ( s ) , R O C 包含 R \int^t_{-\infty}x(\tau)d\tau \stackrel{LT}{\longleftrightarrow} \frac{X(s)}{s},ROC包含R\cap{\{Re\{s\} > 0\}}\\\frac{dx(t)}{dt} \stackrel{LT}{\longleftrightarrow} sX(s),ROC包含R tx(τ)dτLTsX(s),ROC包含R{Re{s}>0}dtdx(t)LTsX(s),ROC包含R

s域微分性质

− t x ( t ) ⟷ L T d X ( s ) d s , R O C = R -tx(t) \stackrel{LT}{\longleftrightarrow} \frac{dX(s)}{ds},ROC = R tx(t)LTdsdX(s),ROC=R

初值定理

x ( t ) x(t) x(t)是因果信号,则有 x ( 0 + ) = lim ⁡ s → ∞ X ( s ) x(0^+) = \underset{s \rightarrow \infty}{\lim}X(s) x(0+)=slimX(s)

终值定理

X ( s ) X(s) X(s)的所有极点要么位于 s s s左半平面,要么是位于原点的一阶极点,则有 lim ⁡ t → ∞ x ( t ) = lim ⁡ s → 0 X ( s ) \underset{t \rightarrow \infty}{\lim}x(t) = \underset{s \rightarrow 0}{\lim}X(s) tlimx(t)=s0limX(s)

拉普拉斯变换的系统函数

定义和傅里叶变换部分的系统函数基本相同
H ( s ) = L { h ( t ) } = ∫ − ∞ ∞ h ( t ) e − s t d t H(s) = \mathscr{L}\{h(t)\} = \int^\infty_{-\infty}h(t)e^{-st}dt H(s)=L{h(t)}=h(t)estdt
对于一个具有有理系统函数的LTI系统而言,其因果性 ⟺ \Longleftrightarrow ROC在 H ( s ) H(s) H(s)最右边极点的右半平面

如果没有有理的系统函数,那就是反之不然的

一个连续的LTI系统是稳定的 ⟺ \Longleftrightarrow 系统函数 H ( s ) H(s) H(s)的ROC包含 j ω j\omega

单边拉普拉斯变换

X ( s ) = ∫ 0 − ∞ x ( t ) e − s t d t \mathscr{X}(s) = \int^\infty_{0^-}x(t)e^{-st}dt X(s)=0x(t)estdt

一个因果信号的单边拉普拉斯变换的结果和双边拉普拉斯变换相同

信号 x ( t ) x(t) x(t)的单边拉普拉斯变换等于信号 x ( t ) u ( t ) x(t)u(t) x(t)u(t)的双边拉普拉斯变换

单边拉普拉斯变换的性质

下面仅列出和双边拉普拉斯变换不同的性质

x ( t ) ⟷ L T X ( s ) , x 1 ( t ) ⟷ L T X 1 ( s ) , x 2 ( t ) ⟷ L T X 2 ( s ) x(t) \stackrel{LT}{\longleftrightarrow} \mathscr{X}(s),x_1(t) \stackrel{LT}{\longleftrightarrow} \mathscr{X}_1(s),x_2(t) \stackrel{LT}{\longleftrightarrow} \mathscr{X}_2(s) x(t)LTX(s),x1(t)LTX1(s),x2(t)LTX2(s)

时域卷积

x 1 ( t ) ∗ x 2 ( t ) ⟷ L T X 1 ( s ) ⋅ X 2 ( s ) x_1(t) \ast x_2(t) \stackrel{LT}{\longleftrightarrow} \mathscr{X}_1(s) \cdot \mathscr{X}_2(s) x1(t)x2(t)LTX1(s)X2(s)

其中 x 1 ( t ) , x 2 ( t ) x_1(t),x_2(t) x1(t),x2(t)必须为因果信号

时域微分积分

d n x ( t ) d t n ⟷ L T s n X ( s ) − ∑ k = 0 n − 1 s n − k − 1 x ( k ) ( 0 − ) ∫ 0 − t x ( τ ) d τ ⟷ L T 1 s X ( s ) , 此处 x ( t ) 必须为因果信号 \frac{d^nx(t)}{dt^n} \stackrel{LT}{\longleftrightarrow} s^n\mathscr{X}(s) - \sum^{n - 1}_{k = 0}s^{n - k - 1}x^{(k)}(0^-) \\ \int^t_{0^-}x(\tau)d\tau \stackrel{LT}{\longleftrightarrow} \frac{1}{s}\mathscr{X}(s),此处x(t)必须为因果信号 dtndnx(t)LTsnX(s)k=0n1snk1x(k)(0)0tx(τ)dτLTs1X(s),此处x(t)必须为因果信号

尺度变换

x ( a t ) ⟷ L T 1 a X ( s a ) , a > 0 x(at) \stackrel{LT}{\longleftrightarrow} \frac{1}{a}\mathscr{X}(\frac{s}{a}),a > 0 x(at)LTa1X(as),a>0

z变换

定义

对于序列 x [ n ] x[n] x[n],其双边 z z z变换定义为
X ( z ) = ∑ n = − ∞ ∞ x [ n ] z − n z = r e j ω X(z) = \sum^\infty_{n = -\infty}x[n]z^{-n} \\ z = re^{j\omega} X(z)=n=x[n]znz=re

r = 1 r = 1 r=1,则在单位圆上进行的 z z z变换就是离散时间傅里叶变换

收敛域

能使洛朗级数 ∑ n = − ∞ ∞ x [ n ] z − n \sum^\infty_{n = -\infty}x[n]z^{-n} n=x[n]zn收敛的 z z z的集合称为 z z z变换的收敛域

收敛域有以下几种类型

  1. 有限长序列的收敛域为整个 z z z平面

  2. 右边序列的收敛域是某个圆的外部区域

  3. 左边序列的收敛域是某个圆的内部区域

  4. 双边序列的收敛域是夹在两个半径有限的圆的环形区域,或者不存在

收敛域还有以下一些性质

  1. 收敛域不包含极点
  2. z z z变换 X ( z ) X(z) X(z)是有理函数,则其收敛域的边界由其极点确定
  3. x [ n ] x[n] x[n]为因果序列(当 n < 0 n < 0 n<0时, x [ n ] = 0 x[n] = 0 x[n]=0), X ( z ) X(z) X(z)的收敛域将包含 z = ∞ z = \infty z=
  4. x [ n ] x[n] x[n]为反因果序列(当 n > 0 n > 0 n>0时, x [ n ] = 0 x[n] = 0 x[n]=0), X ( z ) X(z) X(z)的收敛域将包含 z = 0 z = 0 z=0

逆z变换

在进行逆 z z z变换时,应该先通过ROC判断 x [ n ] x[n] x[n]类型,然后选用合适的方法进行计算

幂级数展开法

X ( z ) X(z) X(z)为有理函数,则可以通过长除法将 X ( z ) X(z) X(z)展开成幂级数,取各项的系数就可以得到 x [ n ] x[n] x[n]

部分分式展开法

可以先将有理的 X ( z ) X(z) X(z)展开为
X ( z ) = ∑ i = 1 m A i 1 − a i z − 1 = ∑ i = 1 m A i z z − a i X(z) = \sum^m_{i = 1}\frac{A_i}{1 - a_iz^{-1}} = \sum^m_{i = 1}\frac{A_iz}{z - a_i} X(z)=i=1m1aiz1Ai=i=1mzaiAiz
然后利用变换对
A i a i n u [ n ] ⟷ Z T 1 1 − a i z − 1 A_ia^n_iu[n] \stackrel{ZT}{\longleftrightarrow} \frac{1}{1 - a_iz^{-1}} Aiainu[n]ZT1aiz11
对以上和式的每一项求逆变换,就可以得到 x [ n ] x[n] x[n]

z变换的性质

x [ n ] ⟷ Z T X ( z ) , R O C = R ; x 1 [ n ] ⟷ Z T X 1 ( z ) , R O C = R 1 ; x 2 [ n ] ⟷ Z T X 2 ( z ) , R O C = R 2 x[n] \stackrel{ZT}{\longleftrightarrow} X(z),ROC = R;x_1[n] \stackrel{ZT}{\longleftrightarrow} X_1(z),ROC = R_1;x_2[n] \stackrel{ZT}{\longleftrightarrow} X_2(z),ROC = R_2 x[n]ZTX(z),ROC=R;x1[n]ZTX1(z),ROC=R1;x2[n]ZTX2(z),ROC=R2

线性

a x 1 [ n ] + b x 2 [ n ] ⟷ Z T a X 1 ( z ) + b X 2 ( z ) , R O C 包含 R 1 ∩ R 2 ax_1[n] + bx_2[n] \stackrel{ZT}{\longleftrightarrow} aX_1(z) + bX_2(z),ROC包含R_1\cap R_2 ax1[n]+bx2[n]ZTaX1(z)+bX2(z),ROC包含R1R2

时移性

x [ n − n 0 ] ⟷ Z T z − n 0 X ( z ) , R O C = R x[n - n_0] \stackrel{ZT}{\longleftrightarrow} z^{-n_0}X(z),ROC = R x[nn0]ZTzn0X(z),ROC=R

z = 0 z = 0 z=0 z = ∞ z = \infty z=可能加入R当中,或者被剔除出去

尺度变换

z 0 n x [ n ] ⟷ Z T X ( z z 0 ) , R O C = ∣ z 0 ∣ R z^n_0x[n] \stackrel{ZT}{\longleftrightarrow} X(\frac{z}{z_0}),ROC = |z_0|R z0nx[n]ZTX(z0z),ROC=z0R

时域扩展

若定义
x ( k ) [ n ] = { x [ n k ] , n 为 k 的倍数 0 , n 不为 k 的倍数 x_{(k)}[n] = \begin{cases} x[\frac{n}{k}],n为k的倍数 \\ \\ 0,n不为k的倍数\end{cases} x(k)[n]= x[kn],nk的倍数0,n不为k的倍数
则有
x k [ n ] ⟷ Z T X ( z k ) , R O C = R k x_k[n] \stackrel{ZT}{\longleftrightarrow} X(z^k),ROC = \sqrt[k]{R} xk[n]ZTX(zk),ROC=kR

共轭性质

x ∗ [ n ] ⟷ Z T X ∗ ( z ∗ ) , R O C = R x^\ast[n] \stackrel{ZT}{\longleftrightarrow} X^\ast(z^\ast),ROC = R x[n]ZTX(z),ROC=R

时域卷积性质

x 1 [ n ] ∗ x 2 [ n ] ⟷ Z T X 1 ( z ) ⋅ X 2 ( z ) , R O C 包含 R 1 ∩ R 2 x_1[n] \ast x_2[n] \stackrel{ZT}{\longleftrightarrow} X_1(z) \cdot X_2(z),ROC包含R_1\cap R_2 x1[n]x2[n]ZTX1(z)X2(z),ROC包含R1R2

z域微分

n x [ n ] ⟷ Z T − z d X ( z ) d z , R O C = R nx[n] \stackrel{ZT}{\longleftrightarrow} -z\frac{dX(z)}{dz},ROC = R nx[n]ZTzdzdX(z),ROC=R

初值定理

x [ n ] x[n] x[n]为因果序列,即当 n < 0 n < 0 n<0时, x [ n ] = 0 x[n] = 0 x[n]=0,则有
x [ 0 ] = lim ⁡ z → ∞ X ( z ) x[0] = \underset{z \rightarrow \infty}{\lim}X(z) x[0]=zlimX(z)

终值定理

x [ n ] x[n] x[n]为因果序列,则有
lim ⁡ n → ∞ x [ n ] = lim ⁡ z → 1 ( z − 1 ) X ( z ) \underset{n \rightarrow \infty}{\lim}x[n] = \underset{z \rightarrow 1}{\lim}(z - 1)X(z) nlimx[n]=z1lim(z1)X(z)

z变换的系统函数

定义和傅里叶变换部分的系统函数基本相同
H ( z ) = Z { h [ n ] } = ∑ n = − ∞ ∞ h [ n ] z − n H(z) = \mathscr{Z}\{h[n]\} = \sum^\infty_{n = -\infty}h[n]z^{-n} H(z)=Z{h[n]}=n=h[n]zn
若某离散LTI系统的系统函数 H ( z ) H(z) H(z)的收敛域是某个圆的外部区域,并且包含 z = ∞ z = \infty z=,则该系统是因果的;反之亦然

一个离散LTI系统是稳定的 ⟺ \Longleftrightarrow 系统函数 H ( z ) H(z) H(z)的ROC包含单位圆 ∣ z ∣ = 1 |z| = 1 z=1

单边z变换

对于序列 x [ n ] x[n] x[n],其单边 z z z变换定义为
Z ( z ) = ∑ n = 0 ∞ x [ n ] z − n \mathscr{Z}(z) = \sum^\infty_{n = 0}x[n]z^{-n} Z(z)=n=0x[n]zn

一个因果序列的单边 z z z变换和双边 z z z变换相同

序列 x [ n ] x[n] x[n]的单边 z z z变换等于序列 x [ n ] u [ n ] x[n]u[n] x[n]u[n]的双边 z z z变换

单边z变换的性质

这里仅列出和双边 z z z变换不同的性质

x [ n ] ⟷ Z T Z ( z ) , x 1 [ n ] ⟷ Z T Z 1 ( z ) , x 2 [ n ] ⟷ Z T Z 2 ( z ) x[n] \stackrel{ZT}{\longleftrightarrow} \mathscr{Z}(z),x_1[n] \stackrel{ZT}{\longleftrightarrow} \mathscr{Z}_1(z),x_2[n] \stackrel{ZT}{\longleftrightarrow} \mathscr{Z}_2(z) x[n]ZTZ(z),x1[n]ZTZ1(z),x2[n]ZTZ2(z)

时域卷积性质

x 1 [ n ] ∗ x 2 [ n ] ⟷ Z T Z 1 ( z ) ⋅ Z 2 ( z ) x_1[n] \ast x_2[n] \stackrel{ZT}{\longleftrightarrow} \mathscr{Z}_1(z) \cdot \mathscr{Z}_2(z) x1[n]x2[n]ZTZ1(z)Z2(z)

其中 x 1 [ n ] , x 2 [ n ] x_1[n],x_2[n] x1[n],x2[n]必须均为因果序列

累加和性质

∑ k = 0 n x [ k ] ⟷ Z T 1 1 − z − 1 Z ( z ) \sum^n_{k = 0}x[k] \stackrel{ZT}{\longleftrightarrow} \frac{1}{1 - z^{-1}}\mathscr{Z}(z) k=0nx[k]ZT1z11Z(z)

此处 x [ n ] x[n] x[n]必须是因果序列

时域延时和超前

x [ n − m ] ⟷ Z T z − m [ Z ( z ) + ∑ n = − 1 − m x [ n ] z − n ] , m > 0 x [ n + m ] ⟷ Z T z − m [ Z ( z ) − ∑ n = 0 m − 1 x [ n ] z − n ] , m > 0 x[n - m] \stackrel{ZT}{\longleftrightarrow} z^{-m} \begin{bmatrix}\mathscr{Z}(z) + \sum^{-m}_{n = -1}x[n]z^{-n}\end{bmatrix},m > 0 \\ x[n + m] \stackrel{ZT}{\longleftrightarrow} z^{-m} \begin{bmatrix}\mathscr{Z}(z) - \sum^{m - 1}_{n = 0}x[n]z^{-n}\end{bmatrix},m > 0 x[nm]ZTzm[Z(z)+n=1mx[n]zn],m>0x[n+m]ZTzm[Z(z)n=0m1x[n]zn],m>0

至于通信系统,信号的时频特性下次再补谔谔,我手都要断了😭

现在是,摸🐟时间

  • 8
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
信号与系统是电子信息类专业中的一门重要课程,它研究的是信号在系统中的传输、处理和控制。信号与系统知识点笔记pdf是一份对于信号与系统课程的重点内容进行总结和梳理的文件。 首先,信号是指随时间、空间或其他独立变量的变化而变化的物理量。信号可以是连续的,也可以是离散的。系统是对信号进行处理和变换的装置或环境。系统可以是线性的,也可以是非线性的。信号与系统的研究内容包括信号的表示和分析、系统的特性和性能分析等。 信号与系统知识点笔记pdf中,首先会介绍信号的分类和表示方法。信号可以分为连续时间信号和离散时间信号,连续时间信号可以用连续函数表示,离散时间信号可以用序列表示。常见的信号有周期信号、非周期信号、连续信号和离散信号等。 其次,笔记中会介绍信号的运算和变换。信号的运算包括加法、乘法、卷积等。信号的变换包括傅里叶变换、拉普拉斯变换等。这些变换可以将信号从时域表示转换为频域表示,便于分析和处理。 另外,笔记中会介绍系统的特性和性能分析。系统的特性包括线性、时变性、因果性、稳定性等。系统的性能分析包括幅频特性、相频特性、频率响应、单位冲激响应等。 最后,信号与系统知识点笔记pdf还会介绍一些应用和工程实例。信号与系统的理论和方法在通信、控制、信号处理等领域有广泛的应用。例如,在通信系统中,可以利用信号与系统的知识对信号进行调制、解调、传输等操作。 总之,信号与系统知识点笔记pdf是一份对于信号与系统课程的重点内容进行总结和梳理的文件。通过学习和掌握这些知识,可以深入理解信号与系统的原理和应用,为后续的学习和工作打下坚实基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

砕月之殇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值