全排列和对换
定义,不需证明,是人为的一种设定。定理,性质,推论全部是可以证明的,推论的证明一般基于某定理或性质
排列及其逆序数
1.把n个不同元素排成一列,叫这n个元素的全排列
2.对于n个不同元素,先规定各元素之间有一个标准次序,于是在n个元素的任一排列中,当某对元素先后次序和标准次序不同时,说构成一个逆序。一个排列中所有逆序总数叫这个排列的逆序数。
3.逆序数为奇数的排列叫奇排列,为偶数的排列叫偶排列。
对换
1.定理一个排列中任意两个元素对话,排列改变奇偶性【基于相邻对换证明】
2.定理奇排列对换成标准排列的对话次数为奇数,偶排列对换成标准排列的对换次数为偶数。【任意排列对换为标准排列】
n阶行列式的定义
1.定义 设有n^2个数,排成n行n列的数表
/*
a11 a12 ... a1n
a21 a22 ... a2n
......
an1 an2 ... ann
*/
∑
(
−
1
)
t
a
1
p
1
a
2
p
2
.
.
.
a
n
p
n
\sum (-1)^ta_{1p1}a_{2p2}...a_{npn}
∑(−1)ta1p1a2p2...anpn称为n阶行列式
p1,p2,…,pn为自然数是1,2…n的一个排列,t为这个排列的逆序数。
行列式代表的是一个数值,数表是行列式的一种表示形式。
2.性质 主对角先以下(上)元素都为0的行列式,叫上(下)三角行列式。这种行列式的值为主对角线元素 乘积。
3.性质 行列式和它的转置行列式相等
4.性质对换行列式的两行(列),行列式变号
5.性质如果行列式有两行(列)完全相同,则此行列式等于0
6.性质行列式的某一行(列)中所有元素乘同一数k,等于用数k乘此行列式
7.性质行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面。
8.性质行列式中如果有两行(列)元素成比例,则此行列式等于零
9.性质若行列式的某一行(列)的元素都是两数之和,则行列式等于两个行列式之和【特定行(列)元素拆分,构造的两个行列式】
10.性质把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去,行列式不变。
行列式按行(列)展开
1.定义n阶行列式中,把(i, j)元
a
i
j
a_{ij}
aij所在的第i行和第j列划去后,留下来的n-1阶行列式叫做(i,j)元
a
i
j
a_{ij}
aij的余子式,记做
M
i
j
M_{ij}
Mij,记
A
i
j
=
(
−
1
)
i
+
j
M
i
j
A_{ij} = (-1)^{i+j}M_{ij}
Aij=(−1)i+jMij叫做(i,j)元
a
i
j
a_{ij}
aij的代数余子式
2.定理
设
D
=
(
a
11
.
.
.
a
1
k
0
.
.
.
0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
a
k
1
.
.
.
a
k
k
0
.
.
.
0
c
11
.
.
.
c
1
k
b
11
.
.
.
b
1
n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
c
n
1
.
.
.
c
n
k
b
n
1
.
.
.
n
n
n
)
D =\begin{pmatrix} a_{11} & ... & a_{1k} & 0 & ... & 0\\ . & ... & . & . & ... & .\\ . & ... & . & . & ... & .\\ . & ... & . & . & ... & .\\ a_{k1} & ... & a_{kk} & 0 & ... & 0\\ c_{11} & ... & c_{1k} & b_{11} & ... & b_{1n}\\ . & ... & . & . & ... & .\\ .& ... & . & . & ... & .\\ .& ... & . & . & ... & .\\ c_{n1} & ... & c_{nk} & b_{n1} & ... & n_{nn} \end{pmatrix}
D=⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎛a11...ak1c11...cn1..............................a1k...akkc1k...cnk0...0b11...bn1..............................0...0b1n...nnn⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎞
D 1 = ( a 11 . . . a 1 k . . . . . . . . . . . . . . . a k 1 . . . a k k ) D1 =\begin{pmatrix} a_{11} & ... & a_{1k} \\ . & ... & . \\ . & ... & . \\ . & ... & . \\ a_{k1} & ... & a_{kk}\\ \end{pmatrix} D1=⎝⎜⎜⎜⎜⎛a11...ak1...............a1k...akk⎠⎟⎟⎟⎟⎞
D
2
=
(
b
11
.
.
.
b
1
n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
b
n
1
.
.
.
b
n
n
)
D2 =\begin{pmatrix} b_{11} & ... & b_{1n} \\ . & ... & . \\ . & ... & . \\ . & ... & . \\ b_{n1} & ... & b_{nn}\\ \end{pmatrix}
D2=⎝⎜⎜⎜⎜⎛b11...bn1...............b1n...bnn⎠⎟⎟⎟⎟⎞
则D = D1D2
3.定理 一个n阶行列式,如果第i行的所有元素除(i,j)元
a
i
j
a_{ij}
aij外都为0,那么这行列式等于
a
i
j
a_{ij}
aij与它的代数余子式的乘积
D =
a
i
j
A
i
j
a_{ij}A_{ij}
aijAij
该定理对列同样适合。
4.定理 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。即:
D
=
a
i
1
A
i
1
+
a
i
2
A
i
2
+
.
.
.
+
a
i
n
A
i
n
D = a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in}
D=ai1Ai1+ai2Ai2+...+ainAin
或
D
=
a
1
j
A
1
j
+
a
2
j
A
2
j
+
.
.
.
+
a
n
j
A
n
j
D = a_{1j}A_{1j} + a_{2j}A_{2j} + ... + a_{nj}A_{nj}
D=a1jA1j+a2jA2j+...+anjAnj
5.定理 行列式某一行(列)的元素与另一行(列)的对于元素的代数余子式乘积之和等于0,即:
a
i
1
A
j
1
+
a
i
2
A
j
2
+
.
.
.
+
a
i
n
A
j
n
=
0
,
i
!
=
j
a_{i1}A_{j1}+a_{i2}A_{j2}+...+a_{in}A_{jn} = 0, i!=j
ai1Aj1+ai2Aj2+...+ainAjn=0,i!=j
或
a
1
i
A
1
j
+
a
2
i
A
2
j
+
.
.
.
+
a
n
i
A
n
j
=
0
,
i
!
=
j
a_{1i}A_{1j} +a_{2i}A_{2j} + ... + a_{ni}A_{nj} = 0, i!=j
a1iA1j+a2iA2j+...+aniAnj=0,i!=j
5.范德蒙德行列式
D
n
=
(
1
1
.
.
.
1
x
1
x
2
.
.
.
x
n
x
1
2
x
2
2
.
.
.
x
n
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
x
1
n
−
1
x
2
n
−
1
.
.
.
x
n
n
−
1
)
D_{n}=\begin{pmatrix} 1 & 1 & ... & 1 \\ x_{1} & x_{2} & ... & x_{n} \\ x_{1}^2 & x_{2}^2 &... & x_{n}^2 \\ . & . & ... & . \\ . & . & ... & . \\ . & . & ... & . \\ x_{1}^{n-1} & x_{2}^{n-1} & ... & x_{n}^{n-1}\\ \end{pmatrix}
Dn=⎝⎜⎜⎜⎜⎜⎜⎜⎜⎛1x1x12...x1n−11x2x22...x2n−1.....................1xnxn2...xnn−1⎠⎟⎟⎟⎟⎟⎟⎟⎟⎞
D
n
=
∏
n
>
=
i
>
j
>
=
1
(
x
i
−
x
j
)
D_{n} = \prod_{n>=i>j>=1}(x_{i} - x_{j})
Dn=n>=i>j>=1∏(xi−xj)