关系的元组演算

元组演算的基本公式


 

{t|P(t)},P是公式

上面的表示的是一个集合,这个集合由t(t是变量)构成的,并且这个必须使P(t)为真

原子公式:

  • s∈R,表示元组s属于关系R
  • s[A] ⊙ c,,⊙是运算符
  • s[A] ⊙ u[B]

下面是关于原子公式的例子

存在量词与全称量词的运用


 

全称和存在量词在涉及到多个表的操作时需要用到

存在量词是对部分元组(不能少于一个)进行验证使得公式为真,而全称量词是对所有的元组进行验证使得公式为真

上例中如果把存在改成全称就错了,因为如果是全称的话意味者t[Sage]比所有的u[Sage]都要大,但是t和u是来自同一个元组的,这显然不可能

等价变化

典型的例子


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值