线段树的基本概念与应用
1. 线段树是一颗二叉搜索树,它的每个结点存储的是一个区间的信息。
2. 线段树的存储是以结构体的形式进行的,每个结点需包含所维护区间的左,右端点,
区间所需维护的信息。
3. 使用线段树可以快速的查询所需信息,它的时间复杂度为O(logN),而未优化的空间复
杂度为2N,实际应用时一般要开到4N以避免越界。
线段树的基础操作
线段树的基础操作包括:建树,单点修改,单点查询,区间修改,区间查询。
(以下操作皆以求和为例)
结点创建:
struct node
{
int l,r; //所维护区间左右端点
int w; //区间所存储信息
}tree[4*MAXN];
1. 建树
思路:对于每一个结点,确定它的左右端点值;如果是叶子结点,存储它的端点值,否则进行状态合并。
void Build(int k,int l,int r)
{
tree[k].l=l,tree[k].r=r;
if(tree[k].l==tree[k].r)
{
scanf("%d",&tree[k].w);
return;
}
int mid=(l+r)/2;
build(2*k,l,mid); //左孩子
build(2*k+1,mind+1,r); //右孩子
tree[k].w=tree[2*k].w+tree[2*k+1].w; //状态合并
return;
}
2.单点查询
思路:首先查询的思想很明显是二分。如果查询的当前结点所维护的区间左端点等于右端点,该点为叶子结点,也即目标结点。如果不是叶子结点,假设所查询的端点为x,当前结点的左右端点分别为 l , r ,中点为mid,如果x<=mid,则递归它的左孩子,否则递归它的右孩子,直到找到目标结点为止。
void query_point(int k)
{
if(tree[k].r==tree[k].l) //左右端点相等,为叶子结点
{
ans=tree[k].w;
return;
}
int mid=(tree[k].l+tree[k].r)/2;
if(x<=mid) query_point(2*k); //目标位置在左侧,递归左孩子
else query_point(2*k+1); //目标位置在右侧,递归右孩子
}
3.单点修改
思路:根据单点查询的原理,找到叶子结点,更改它的值,并且修改所有被它所影响的结点的值。
例:找到目标结点x,并且将该结点加上y;
void change_point(int k)
{
if(tree[k].l==tree[k].r)
{
tree[k].w+=y;
return;
}
int mid=(tree[k].l+tree[k].r)/2;
if(x<=mid) change_point(2*k);
else change_point(2*k+1);
tree[k].w=tree[2*k].w+tree[2*k+1].w; //所有包含x的结点的值的更新,递归思想
return ;
}
4.区间查询
思路:查询区间为( a , b );当前结点区间为( l , r );
① 当前结点区间(l,r)全在查询区间(a,b)中;
a____l____r_____b 直接加上当前结点区间的状态。
② 当前结点区间只有一部分在查询区间中;
a____l____b_____r 暂时不加当且结点状态,根据区间端点与终点的位置关系,
继续递归左孩子或者右孩子,直到满足情况①。
③ 当前结点区间包含了待查询区间;
l____a____b_____r 根据a,b与mid的情况向下走;
mid=(l+r)/2;
b<=mid,查询区间全在左子区间,向左孩子走;
a>mid,查询区间全在右子区间,向右孩子走;
否则,左,右子区间都走;
void query_interval(int k)
{
if(a<=tree[k].l&&b>=tree[k].r)
{
ans+=tree[k].w;
return ;
}
int mid=(tree[k].l+tree[k].r)/2;
if(a<=mid) query_interval(2*k);
if(b>mid) query_interval(2*k+1);
5.区间修改
区间修改相对与上面的几个操作来说,较为复杂。
例如,现在需要将区间[a,b]内的每个数都加上y;
如果向之前单点修改那样,将所有受到这次修改操作影响的结点全部修改,在输出区间[a,b]的值;
那也太复杂了,如果这个树的深度很深,会非常耗时,与我们使用线段树的初衷不符。
事实上对于区间[a,b]来说,它的子区间的值是不需要改变的,我们根本用不到;
假设[a,b]包含于二叉树的一个结点k中,对于以k为祖先的所有孩子结点的值我们是不需要更改的;
所以,只需修改对当前查询有影响的结点!
为了实现这个操作,这里引入新的状态标记—懒惰标记。
懒惰标记
原结构体中需增加懒惰标记变量;
作用:存储这个结点的修改信息,暂时不把他传递给子节点。
进行操作时,找到需要更改的结点时,只需要更新这个结点的状态,把懒惰标记累加上去;
需要用到它的子节点时,才把懒惰标记传递给它的子节点,此时,子结点的状态应该为:
初状态+父亲下传的懒惰标记*区间元素个数(注意,这里必须时父亲下传的懒惰标记,而非自己的);
如果是自己的,可能是父亲多次传下来的累计,每次都乘自己的会有重复。
下传后懒惰标记需要清0;
懒惰标记下传代码:
void down(int k)
{
tree[2*k].f+=tree[k].f; //懒惰标记下传给左儿子
tree[2*k+1].f+=tree[k].f; //懒惰标记下传给右儿子
tree[2*k].w+=tree[k].f*(tree[2*k].r-tree[2*k].l+1); //左儿子状态更新
tree[2*k+1].w+=tree[k].f*(tree[2*k+1].r-tree[2*k+1].l+1); //右儿子状态更新
tree[k].f=0; //父亲结点懒惰标记清零
return;
}
区间修改代码:
void change_interval(int k)
{
if(tree[k].l>=a&&tree[k].r<=b)
{
tree[k].w+=(tree[l].r-tree[k].l+1)*y;
tree[k].f+=y;
return;
}
if(tree[k].f) down(k);
int mid=(tree[k].l+tree[k].r)/2;
if(a<=mid) change_interval(2*k);
if(b>mid) change_interval(2*k+1);
tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
懒惰坐标的引用将很多用不到的状态存了起来,会对,其他操作造成影响;
所以在进行单点查询,单点修改,区间查询的时候也需对用的着的懒惰标记进行下传;
即加入:
if(tree[k].f) down(k);
其余不变。
五种基本操作完整代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{
int l,r,w;
int f;//懒惰标记
} tree[4*maxn];
//建树
void build(int k,int l,int r)
{
tree[k].l=l,tree[k].r=r;
if(tree[k].l==tree[k].r)
{
scanf("%d",&tree[k].w);
return;
}
int mid=(l+r)/2;
build(2*k,l,mid);
build(2*k+1,mind+1,r);
tree[k].w=tree[2*k].w+tree[2*k+1].w;
return;
}
//懒坐标下传
void down(int k)
{
tree[2*k].f+=tree[k].f;
tree[2*k+1].f+=tree[k].f;
tree[2*k].w+=tree[k].f*(tree[2*k].r-tree[2*k].l+1);
tree[2*k+1].w+=tree[k].f*(tree[2*k+1].r-tree[2*k+1].l+1);
tree[k].f=0;
return;
}
//单点查询
void query_point(int k)
{
if(tree[k].r==tree[k].l)
{
ans=tree[k].w;
return;
}
int mid=(tree[k].l+tree[k].r)/2;
if(tree[k].f) down(k);
if(x<=mid) ask_point(2*k);
else ask_point(2*k+1);
}
//单点修改
void change_point(int k)
{
if(tree[k].l==tree[k].r)
{
tree[k].w+=y;
return;
}
if(tree[k].f) down(k);
int mid=(tree[k].l+tree[k].r)/2;
if(x<=mid) change_point(2*k);
else change_point(2*k+1);
tree[k].w=tree[2*k].w+tree[2*k+1].w;
return ;
}
//区间查询
void query_interval(int k)
{
if(a<=tree[k].l&&b>=tree[k].r)
{
ans+=tree[k].w;
return ;
}
if(tree[k].f) down(k);
int mid=(tree[k].l+tree[k].r)/2;
if(a<=mid) query_interval(2*k);
if(b>mid) query_interval(2*k+1);
}
//区间修改
void change_interval(int k)
{
if(tree[k].l>=a&&tree[k].r<=b)
{
tree[k].w+=(tree[l].r-tree[k].l+1)*y;
tree[k].f+=y;
return;
}
if(tree[k].f) down(k);
int mid=(tree[k].l+tree[k].r)/2;
if(a<=mid) change_interval(2*k);
if(b>mid) change_interval(2*k+1);
tree[k].w=tree[k*2].w+tree[k*2+1].w;
}