【LeetCode题解】225_用队列实现栈(Implement-Stack-using-Queues)

更多 LeetCode 题解笔记可以访问我的 github

描述

使用队列实现栈的下列操作:

  • push(x) – 元素 x 入栈
  • pop() – 移除栈顶元素
  • top() – 获取栈顶元素
  • empty() – 返回栈是否为空

注意:

  • 你只能使用队列的基本操作-- 也就是 push to back, peek/pop from front, size, 和 is empty 这些操作是合法的。
  • 你所使用的语言也许不支持队列。 你可以使用 list 或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
  • 你可以假设所有操作都是有效的(例如, 对一个空的栈不会调用 pop 或者 top 操作)。

解法一:双队列,入快出慢

思路

为了实现栈这种数据结构后入先出(last in first out, LIFO)的效果,解法一借助于两个队列。其中,一个队列保存栈的所有元素(设为队列1 q1),另一个队列用于辅助实现入栈、出栈的效果(设为队列2 q2)。相关操作的底层实现细节见下面对应的小节。

入栈(push)

入栈时,直接将新的元素 x 压入队列1 q1 的队尾(rear),并且用变量 top 保存栈顶元素,方便后面的查看栈顶元素(peek)操作,具体的实现步骤见图1。

在这里插入图片描述

图1:将一个元素压入栈

代码(Java)实现如下:

/** Push element x onto stack. */
public void push(int x) {
    top = x;
    q1.add(x);
}

复杂度分析如下:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

出栈(pop)

由于入栈时直接将元素入队到队列1 q1 中,因此,栈顶的元素位于队列1 q1 的尾部。为了能将栈顶元素(队列1 q1 尾部的元素)弹出,必须先将队列1 q1 队尾之前的元素出队。这里,我们借助另一个队列(辅助队列 q2)实现这一过程——将队列1 q1 队尾之前的元素出队并入队到队列2 q2 中。 之后,将队列1 q1 中唯一个元素(栈顶元素)出队。最后,再将两个队列的引用进行交换即可完成出栈操作。具体的实现步骤如图2所示。

在这里插入图片描述

图2:将一个元素出栈

代码(Java)实现如下:

/** Removes the element on top of the stack and returns that element. */
public int pop() {
    if (q1.size() == 0) {
        throw new NoSuchElementException("[ERROR] The queue is empty!");
    }

    while (q1.size() > 1) {
        top = q1.remove();
        q2.add(top);
    }
    int res = q1.remove();

    Queue<Integer> temp = q1;
    q1 = q2;
    q2 = temp;

    return res;
}

复杂度分析如下:

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 表示未出栈前元素的数目。出栈操作需要从队列1 q1 出队 n n n 个元素,同时入队 n − 1 n-1 n1 个元素到队列2 q2,因此需要 2 n − 1 2n - 1 2n1 次操作。因此 LinkedList 的添加和删除操作的时间复杂度是 O ( 1 ) O(1) O(1) 的,因此,总的时间复杂度为 O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)

查看栈顶元素(peek)

因为我们用变量 top 保存了栈顶的元素,因此只需要返回该变量即可,代码(Java)实现如下:

/** Get the top element. */
public int top() {
    return top;
}

复杂度分析如下:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

是否为空(empty)

队列1 q1 中保存了栈中的所有元素,因此,如果想要知道栈是否为空,只需要判断队列1 q1 中是否还有元素,代码(Java)实现如下:

/** Returns whether the stack is empty. */
public boolean empty() {
	return q1.isEmpty();
}

复杂度分析如下:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

Java 实现

import java.util.NoSuchElementException;
import java.util.LinkedList;
import java.util.Queue;

class MyStack {

    /**
     * The main queue using to store all the elements in the stack
     */
    private Queue<Integer> q1;
    /**
     * The auxiliary queue using to implement `pop` operation
     */
    private Queue<Integer> q2;
    /**
     * The top element in the stack
     */
    private int top;

    /** Initialize your data structure here. */
    public MyStack() {
        q1 = new LinkedList<>();
        q2 = new LinkedList<>();
    }

    /** Push element x onto stack. */
    public void push(int x) {
        top = x;
        q1.add(x);
    }

    /** Removes the element on top of the stack and returns that element. */
    public int pop() {
        if (q1.size() == 0) {
            throw new NoSuchElementException("[ERROR] The stack is empty!");
        }

        while (q1.size() > 1) {
            top = q1.remove();
            q2.add(top);
        }
        int res = q1.remove();

        Queue<Integer> temp = q1;
        q1 = q2;
        q2 = temp;

        return res;
    }

    /** Get the top element. */
    public int top() {
        return top;
    }

    /** Returns whether the stack is empty. */
    public boolean empty() {
        return q1.isEmpty();
    }
}

Python 实现

from collections import deque

class MyStack:

    def __init__(self):
        """
        Initialize your data structure here.
        """
        self._q1, self._q2, self._top = deque(), deque(), None
        

    def push(self, x):
        """
        Push element x onto stack.
        :type x: int
        :rtype: void
        """
        self._top = x
        self._q1.append(x)
        

    def pop(self):
        """
        Removes the element on top of the stack and returns that element.
        :rtype: int
        """
        if not self._q1:
            raise Exception("[ERROR] The stack is empty!")
            
        while len(self._q1) > 1:
            self._top = self._q1.popleft()
            self._q2.append(self._top)
        res = self._q1.popleft()
        
        self._q1, self._q2 = self._q2, self._q1
        return res
        

    def top(self):
        """
        Get the top element.
        :rtype: int
        """
        return self._top
        

    def empty(self):
        """
        Returns whether the stack is empty.
        :rtype: bool
        """
        return not self._q1

解法二:双队列,入慢出快

思路

与解法一相同的是,解法二也借助于两个队列。不同之处在于解法二在入栈时,已经在队列中将元素排列成出栈的顺序。因此,解法二实现的栈的入栈操作是 O ( n ) O(n) O(n) 的时间复杂度,而出栈操作则只需要 O ( 1 ) O(1) O(1) 的时间复杂度。相关操作的底层实现细节见下面对应的小节。

入栈(push)

为了使得队列1 q1 中的出队顺序和出栈顺序是一致的,需要借助另一个队列(辅助队列 q2)。每次有新的元素压入栈时,将该元素入队到队列2 q2 中。接着,将队列1 q1 中的所有元素出队并入队到队列2 q2 中。最后,再将两个队列的引用进行交换,则队列1 q1 中出队的顺序即为实际的出栈顺序。具体的操作步骤如图3所示。

在这里插入图片描述

图3:将一个元素压入栈

代码(Java)实现如下:

/** Push element x onto stack. */
public void push(int x) {
    q2.add(x);
    while (!q1.isEmpty()) {
        q2.add(q1.remove());
    }

    Queue<Integer> temp = q1;
    q1 = q2;
    q2 = temp;
}

复杂度分析如下:

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 表示入栈前元素的数目。入栈操作需要 n + 1 n+1 n+1 个入队操作,同时还需要 n n n 个出队操作,因此,总共需要 2 n + 1 2n + 1 2n+1 个操作。由于 LinkedList 的添加和删除操作的时间复杂度是 O ( 1 ) O(1) O(1) 的,因此,总的时间复杂度是 O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)

出栈(pop)

由于在入栈时已经将队列中的元素排列成出栈的顺序,因此,只需要出队队列1 q1 中队首的元素即可。

在这里插入图片描述

图4:将一个元素出栈

代码(Java)实现如下:

/** Removes the element on top of the stack and returns that element. */
public int pop() {
    if (q1.isEmpty()) {
        throw new NoSuchElementException("[ERROR] The stack is empty!");
    }

    return q1.remove();
}

复杂度分析如下:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

查看栈顶元素(peek)

同理,只需要返回队列1 q1 队首元素即可。

/** Get the top element. */
public int top() {
    if (q1.isEmpty()) {
        throw new NoSuchElementException("[ERROR] The stack is empty!");
    }

    return q1.peek();
}

复杂度分析如下:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

是否为空(empty)

这个操作和解法一的没什么不同,故不再赘言。

Java 实现

import java.util.LinkedList;
import java.util.NoSuchElementException;
import java.util.Queue;

class MyStack {
    private Queue<Integer> q1;
    private Queue<Integer> q2;

    /** Initialize your data structure here. */
    public MyStack() {
        q1 = new LinkedList<>();
        q2 = new LinkedList<>();
    }

    /** Push element x onto stack. */
    public void push(int x) {
        q2.add(x);
        while (!q1.isEmpty()) {
            q2.add(q1.remove());
        }

        Queue<Integer> temp = q1;
        q1 = q2;
        q2 = temp;
    }

    /** Removes the element on top of the stack and returns that element. */
    public int pop() {
        if (q1.isEmpty()) {
            throw new NoSuchElementException("[ERROR] The stack is empty!");
        }

        return q1.remove();
    }

    /** Get the top element. */
    public int top() {
        if (q1.isEmpty()) {
            throw new NoSuchElementException("[ERROR] The stack is empty!");
        }

        return q1.peek();
    }

    /** Returns whether the stack is empty. */
    public boolean empty() {
        return q1.isEmpty();
    }
}

Python 实现

from collections import deque

class MyStack:

    def __init__(self):
        """
        Initialize your data structure here.
        """
        self._q1, self._q2 = deque(), deque()
        

    def push(self, x):
        """
        Push element x onto stack.
        :type x: int
        :rtype: void
        """
        self._q2.append(x)
        while self._q1:
            self._q2.append(self._q1.popleft())
        self._q1, self._q2 = self._q2, self._q1
        

    def pop(self):
        """
        Removes the element on top of the stack and returns that element.
        :rtype: int
        """
        if not self._q1:
            raise Exception("[ERROR] The stack is empty!")
        return self._q1.popleft()

    def top(self):
        """
        Get the top element.
        :rtype: int
        """
        if not self._q1:
            raise Exception("[ERROR] The stack is empty!")
        return self._q1[0]
        

    def empty(self):
        """
        Returns whether the stack is empty.
        :rtype: bool
        """
        return not self._q1

解法三:单队列

思路

上面两种解法都借助于两个队列,实际上,只借助于一个队列也可以实现栈的先入先出效果。

入栈(push)

入栈时,新添加的元素位于队列的队尾,但是对于栈而言,它其实是栈顶元素。为了使得新添加的元素位于队首,可以将其之前的所有元素出队并重新入队。最终,队列中元素的顺序和出栈的顺序是一致的。具体的操作步骤如下图所示。

在这里插入图片描述

图5:将一个元素压入栈

代码(Java)实现如下:

/** Push element x onto stack. */
public void push(int x) {
    queue.add(x);
    for (int i = 0; i < queue.size() - 1; ++i) {
        queue.add(queue.remove());
    }
}

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 表示入栈前栈内元素的数目。入栈操作需要 n n n 次的出队操作,同时也需要 n + 1 n + 1 n+1次的入队操作,因此,需要总的操作次数为 2 n + 1 2n + 1 2n+1 次。由于 LinkedList 的添加和删除操作的时间复杂度是 O ( 1 ) O(1) O(1) 的,因此,总的时间复杂度为 O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)

出栈(pop)

由于在入栈时已经将队列中的元素排列成出栈的顺序,因此,只需要出队队列 q1 中队首的元素即可。

在这里插入图片描述

图6:将一个元素出栈

代码(Java)实现如下:

/** Removes the element on top of the stack and returns that element. */
public int pop() {
    if (queue.isEmpty()) {
        throw new NoSuchElementException("[ERROR] The stack is empty!");
    }

    return queue.remove();
}

复杂度分析如下:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

查看栈顶元素(peek)

同理,只需要返回队列 q1 的队首元素即可。

/** Get the top element. */
public int top() {
    if (queue.isEmpty()) {
        throw new NoSuchElementException("[ERROR] The stack is empty!");
    }

    return queue.peek();
}

复杂度分析如下:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

是否为空(empty)

队列 q1 中保存了栈中的所有元素,因此,如果想要知道栈是否为空,只需要判断队列 q1 中是否还有元素,代码(Java)实现如下:

/** Returns whether the stack is empty. */
public boolean empty() {
    return queue.isEmpty();
}

复杂度分析如下:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

Java 实现

import java.util.LinkedList;
import java.util.NoSuchElementException;
import java.util.Queue;

class MyStack {
    private Queue<Integer> queue;

    /** Initialize your data structure here. */
    public MyStack() {
        queue = new LinkedList<>();
    }

    /** Push element x onto stack. */
    public void push(int x) {
        queue.add(x);
        for (int i = 0; i < queue.size() - 1; ++i) {
            queue.add(queue.remove());
        }
    }

    /** Removes the element on top of the stack and returns that element. */
    public int pop() {
        if (queue.isEmpty()) {
            throw new NoSuchElementException("[ERROR] The stack is empty!");
        }

        return queue.remove();
    }

    /** Get the top element. */
    public int top() {
        if (queue.isEmpty()) {
            throw new NoSuchElementException("[ERROR] The stack is empty!");
        }

        return queue.peek();
    }

    /** Returns whether the stack is empty. */
    public boolean empty() {
        return queue.isEmpty();
    }
}

/**
 * Your MyStack object will be instantiated and called as such:
 * MyStack obj = new MyStack();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.top();
 * boolean param_4 = obj.empty();
 */

Python 实现

from collections import deque

class MyStack:

    def __init__(self):
        """
        Initialize your data structure here.
        """
        self._q = deque()
        

    def push(self, x):
        """
        Push element x onto stack.
        :type x: int
        :rtype: void
        """
        self._q.append(x)
        for _ in range(len(self._q) - 1):
            self._q.append(self._q.popleft())
        

    def pop(self):
        """
        Removes the element on top of the stack and returns that element.
        :rtype: int
        """
        if not self._q:
            raise Exception("[ERROR] The stack is empty!")
        return self._q.popleft()

    def top(self):
        """
        Get the top element.
        :rtype: int
        """
        if not self._q:
            raise Exception("[ERROR] The stack is empty!")
        return self._q[0]
        

    def empty(self):
        """
        Returns whether the stack is empty.
        :rtype: bool
        """
        return not self._q
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值