人工智能模型的因果推断、解释性及风险管理
1. 因果推断库介绍
1.1 CausalNex
CausalNex 是一个开源的 Python 库,可帮助我们开发能够推断因果关系而非仅观察相关性的模型。其“what if”库可利用贝叶斯网络测试场景并进行因果推理。该库的主要特点如下:
- 简化贝叶斯网络中的因果关系理解 :通过可视化工具,如网络图、影响图和决策图,让用户清晰看到不同变量之间的连接和相互影响。
- 理解变量间的条件依赖关系 :包含先进的结构学习方法,能从数据中自动学习贝叶斯网络的结构,帮助用户识别变量间的关系。
- 增强领域知识 :允许用户将特定领域知识融入贝叶斯网络结构,提高模型的准确性和可靠性。
- 评估模型质量 :提供统计检查和模型选择等工具,确保所建模型准确适用于具体问题。
- 基于结构关系构建预测模型 :可根据贝叶斯网络中的结构关系构建预测模型,用于预测未来结果或进行“what if”场景测试。
例如,从学生表现的因果关系图中可以看出,过度使用互联网会导致缺课增加,而增加学习时间会提高成绩。
1.2 DoWhy
DoWhy 是用于因果推断和分析的 Python 库,支持与其他因果估计库(如 Causal ML 和 EconML)的互操作性。其主要特点包括:
- 注重稳健性检查和敏感性分析 :提供多种评估因果估计稳健性的方法,如自举