可持续AI模型开发与特征存储的实践探索
1. 可持续性在AI解决方案开发中的重要性
在开发AI解决方案时,可持续性的重要性日益凸显。我们需要关注云指标、架构和运营知识,以减少二氧化碳排放。例如,联邦学习(FL)模型可以根据客户端的能源可用性进行训练,从而降低高二氧化碳排放的不利影响。我们还了解了基于FL的高效设计模式,包括训练、模型管理和模型聚合模式。
在训练和部署FL策略方面,不同的基于深度学习的训练优化器对解决方案的可持续性有着不同的影响。同时,我们也探讨了集中式学习与FL中的可持续性因素,通过硬件类型、效率、运行时间、模型架构、冷却需求、云提供商和地区等因素来估算GPU计算的二氧化碳足迹。此外,我们还学习了如何计算总能耗、使用不同的排放指标以及遵循最佳实践以提高数据中心的效率。
2. 可持续模型开发实践
2.1 可持续性与AI伦理部署
可持续性与AI的伦理部署相结合,有助于我们迈向更好的生态完整性和社会正义。在构建AI产品的整个过程中,从创意产生到训练、调整、实施和治理,我们都应该意识到自身行为和AI解决方案对环境的影响,并确保它们对未来世代友好。当我们使用指标来衡量工作的影响时,我们能够更负责任和道德地工作。
2.2 组织标准与可持续、可信框架
组织需要制定可持续、可信框架的准则,以确保部署到生产环境的系统符合法规要求。以下是一些可重用和集成到现有平台的开源框架:
- TensorFlow Model Remediation:由Google开发的库,旨在限制模型预处理、训练或后处理过程中的偏差。
- TensorFlow Privacy:Google开发的库,使机器学习优化器在优化机器学习模型的目标函数时能够纳入差分隐私。
- AI Fairness 360:IBM开发的库,用于检测和减轻偏差。
- Responsible AI Toolbox:微软开发的库,帮助在可信环境中道德地访问、开发和部署AI解决方案。
- XAI:促进通过模型评估和监控实现模型可解释性的库。
- TensorFlow Federated:支持涉及多个客户端的分布式训练的库。
2.3 模型治理和风险管理活动
为了建立开发和部署生命周期中的最佳伦理和可持续实践,组织领导需要回答以下关键问题:
| 模型实践 | 关键问题 |
| — | — |
| 模型开发阶段 - 识别 | 组织是否根据联邦指导识别并列出了关键监管工具?例如,在银行和保险领域,是否使用某些金融和风险模型来评估框架? |
| 模型开发阶段 - 编目 | 模型编目策略是什么?在模型开发生命周期中是否有模型分类过程?是否考虑了不同的风险,以及这如何影响不同模型的排名? |
| 模型开发阶段 - 命名策略和安全 | 如何管理模型命名空间?是否考虑了领域问题和业务用例?关键利益相关者如何参与模型版本控制和安全管理? |
| 模型开发阶段 - 正式政策和程序 | 是否有适当的指南、审计清单和授权人员参与制定模型开发、验证、使用、监控和退役的标准和指南? |
| 模型开发阶段 - 合规性 | 是否有监管要求清单?是否经常进行监管要求审计?是否有训练有素的人员与机器学习、数据工程和分析团队密切合作,以验证所有企业系统是否符合确认和合规要求? |
| 模型开发阶段 - 研究和最佳实践应用 | 是否有深入研究并根据模型所服务的问题进行研究的举措?是否有训练有素的人员负责研究和传播当前模型的最佳(标准)实践? |
| 模型开发阶段 - 文档 | 是否有在问题定义和业务目标范围内记录良好的模型?是否有特征存储的定义以及团队共享和重用特征、模型和数据时的既定沟通流程?如何在不违反安全的情况下确保数据和模型的可用性,同时确保团队成员的意识? |
| 模型开发阶段 - 共享和重用 | 如何在集中式和联邦学习(FL)中共享机器学习模型和特征?如何在团队之间的特征更新中纳入内置的安全、隐私和通知策略? |
| 模型验证阶段 - 测试和验证 | 当模型在服务框架中就位时,如何纳入模型的单元测试和系统测试?采用了哪些干预和监督技术来确保正式的模型验证程序以及模型服务API?有哪些指南和实践用于认证跨平台的模型互操作性?考虑了哪些排放指标? |
| 模型验证阶段 - 挑战/有效批评 | 如何处理模型输入、输出、训练、验证和测试过程中遇到的审查/挑战?有哪些敏捷流程可用于纳入增量模型更改,以确保模型准确、私密、公平且可解释? |
| 模型实施阶段 - 实施和治理使用 | 模型的标准操作程序是什么,特别是在刷新、查询、链接使用、数据转储和输入识别处理方面?是否遵循了共享控制工具的推荐实践?是否为用户建立了诸如监视窗口、余额检查和备份等共享技术? |
| 持续监控模型 - 补救 | 是否有适当的模型跟踪用于补救和错误纠正?是否有跨平台、机器学习模型和数据管道的可持续性定义指标? |
| 持续监控模型 - 变更管理 | 如何在文档中跟踪和更新模型更改? |
| 持续监控模型 - 审计和审查 | 是否建立了最佳的审计和审查流程来验证防线并确保模型输出的质量?如何建立基准以区分和扩展大型企业级平台中的模型?如何根据不同客户端平台的基准有效控制成本? |
| 持续监控模型 - 风险容忍度、偏好和风险阈值定义 | 模型接受的不同阈值水平是什么?是否根据问题范围、领域和数据量制定了可接受的风险容忍度水平?是否维持和建立了相对于每个模型预期的财务影响/美元差异? |
| 持续监控模型 - 识别二次风险 | 评估管理其他风险(如错过截止日期或破坏数据架构)所产生的风险的技术有哪些? |
| 持续监控模型 - 识别操作风险 | 如何定义模型实施中的操作风险?这是否涉及对不同特征(如贴现率)的考虑和定期审查,或确保操作程序(如版本控制)的验证? |
| 持续监控模型 - 识别新兴风险 | 由于模型随时间的持续刷新,新的或潜在的新兴风险有哪些? |
| 持续监控模型 - 跟踪 | 传统、深度学习和基于FL的模型的跟踪步骤是什么?跟踪步骤如何允许修订并为整个模型生命周期的额外使用提供空间? |
| 持续监控模型 - 持续监控 | 有哪些监控工具和仪表板可用于定期监控模型的准确性、相关性和可解释性?如何使用模型可解释性工具向业务利益相关者传达业务模型风险、数据和概念漂移? |
| AI应用使用 - 许可证、使用条款和点击通过的条款和条件 | 有哪些审计流程来验证许可证、使用条款和保证?如何通过包含劝阻使用或承担意外应用责任的语言来确保AI应用的正确使用?例如,是否允许放弃对救生设备、关键任务航空电子设备、军事应用或弹药的任何使用,并同时拒绝出口到或在禁运国家使用? |
每个业务单元都需要回答这些问题,以确保建模过程与企业战略的正确对齐。这有助于组织意识到可持续性实践,并将重点转向数据和模型开发及治理策略。
2.4 可持续模型开发的重要性
通过回答上述问题并建立必要的流程,组织可以促进以环保的方式进行重用和协调。这需要一个统一的链管理模型,通过提高透明度和可解释性以及减少对关键人员的依赖来防止机器学习模型的潜在滥用。同时,为董事会治理公司和CxO办公室运营设定伦理边界也非常重要。CxO(包括CEO、CTO和CIO)的倡议对于任何AI驱动的业务的成功至关重要,这些倡议不仅可以提高利润率,还可以通过明智地使用资源和雇佣训练有素的数据团队节省数十亿美元。相反,未能回答这些问题并建立所需流程的组织将遭受时间和金钱的损失,并且无法在竞争激烈的世界中维持其AI驱动的业务用例。
3. 特征存储中的可解释性、隐私和可持续性
3.1 特征存储组件和功能
特征存储在分布式架构中有多个组件,每个组件都有其特定的功能:
1.
数据源单元
:从第三方源接收和聚合数据,数据可以是原始数据、SQL数据或事件数据。为了构建可持续的机器学习模型和特征存储,基础设施需要具备FL能力,数据主要来自移动设备、物联网设备或医疗物联网(IoMT)的事件数据。即使没有FL,具有再训练能力的自动反馈循环也可以帮助创建可持续的机器学习模型。
2.
摄取和特征工程管道
:数据需要进行匿名化处理以保护个人身份信息(PII)。为了构建可持续的管道,设计应支持重用,以提取可跨团队使用的相关特征。同时,特征工程管道应分布在云和边缘设备上,以支持基于联邦协作的学习方法和部署策略,从而分散负载并控制集中式训练程序的排放率。
3.
特征管理和可解释性
:该组件负责在线和离线处理的特征管理和可解释性。通过使用适当的安全规则创建沙箱环境或隔离单元,以满足不同团队对不同敏感度特征的处理和存储需求。它还负责满足AI伦理的支柱,包括特征可解释性、偏差识别和特征推荐,确保数据和特征的公平性,以避免产生有偏差的机器学习模型。
4.
存储
:用于存储元数据、在线和离线特征,包括SQL和NoSQL数据库以及缓存,可在磁盘和内存中维护存储以实现快速检索。
5.
时间旅行查询
:用户可以执行高速搜索,返回给定时间点的数据(了解数据历史并记录其谱系)、给定时间间隔的数据以及自给定时间点以来数据的更改。通过使用索引(布隆过滤器、z索引和数据跳过索引)可以高效执行时间旅行查询,减少从文件系统或对象存储中读取的数据量。
6.
模型漂移识别
:该组件负责识别模型漂移,通过设置单个模型的访问权限,促进模型评分指标的比较,以便及时对模型进行再训练。
3.2 联邦学习的特征存储
我们可以利用现有特征存储管道的概念进行协作学习,如在联邦学习(FL)框架中。FeatureCloud AI Store for FL(主要为生物医学研究构建)可以通过提供一个统一的即用型应用程序平台,在其他领域得到应用。
FeatureCloud的不同组件允许协作方共同创建一个可包含新第三方应用程序的云认证特征存储。这些统一的联邦应用程序在可扩展平台上可以产生与集中式机器学习相似的结果。随着协作的增加,内置的隐私机制(如同态加密、安全多方计算和差分隐私)变得至关重要,以保护敏感信息。
FeatureCloud AI Store通过重新定义应用程序编程接口(API),消除了传统基于FL建模的限制,使开发人员更容易重用和共享外部开发人员的新应用程序。它具有开放的API系统和部署分发支持,允许通过可配置的工作流使用算法。该特征存储对外部开发人员透明开放,他们可以自由添加和发布自己的联邦应用程序,使其成为数据、模型和应用程序的高效协作媒介。
3.3 FeatureCloud的应用和特点
第三方应用程序的应用界面提供了不同类别应用程序的详细信息,包括简短描述、关键字、用户评级和认证状态。每个应用程序除了分为预处理、分析或评估类别外,还配备了图形前端或简单的配置文件,用于设置应用程序参数并使其适应不同的上下文。
任何属于FeatureCloud的应用程序都在Docker容器中运行,通过FeatureCloud API与其他应用程序交换数据和其他重要信息。FeatureCloud提供模板和测试模拟器,加速联邦应用程序的开发。同时,这种共享应用程序环境具有应用程序文档、搜索和过滤功能以及应用程序认证过程,以促进AI存储中的隐私标准。认证过程强制执行严格的指南,频繁测试隐私泄漏,测试失败会通知相关开发人员解决问题。并且,每当应用程序更新时,会启动新的认证过程。
然而,这种协作、可持续平台的一个关键缺点是协调器在聚合各个模型之前可以访问所有单个模型。因此,该框架采用了不同的隐私措施,如安全多方计算和差分隐私,以处理任何隐私泄漏问题。
3.4 FeatureCloud工作流
通过让所有协作伙伴使用Docker下载并启动客户端FeatureCloud控制器,可以设计联邦工作流。用户可以在FeatureCloud网站上创建账户,从而在AI存储中的用户应用程序之间顺利建立协调。通过在工作流中集成交叉验证(CV)、标准化、模型训练和模型评估程序,FeatureCloud促进了跨机构的数据和算法共享与分析。多个应用程序组成一个工作流,依次执行这些应用程序完成一个独特的工作流。一个应用程序的输出或结果可以被另一个应用程序使用,并且可以跟踪或监控整个工作流的进度。工作流的结果可以在参与实体之间共享,以理解和评估整个建模过程的每个步骤。FeatureCloud可以解决生物医学和其他领域的实际问题。
以下是FeatureCloud工作流的mermaid流程图:
graph LR
classDef startend fill:#F5EBFF,stroke:#BE8FED,stroke-width:2px;
classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
classDef decision fill:#FFF6CC,stroke:#FFBC52,stroke-width:2px;
A([开始]):::startend --> B(下载并启动客户端FeatureCloud控制器):::process
B --> C(创建FeatureCloud账户):::process
C --> D(集成CV、标准化、模型训练和评估程序):::process
D --> E(应用程序依次执行):::process
E --> F{工作流完成?}:::decision
F -->|否| E
F -->|是| G(共享工作流结果):::process
G --> H([结束]):::startend
综上所述,可持续性在AI模型开发和特征存储中起着至关重要的作用。通过遵循可持续模型开发实践、建立可持续和可信的框架、利用特征存储的功能以及采用像FeatureCloud这样的协作平台,可以实现更环保、高效和可信的AI解决方案。同时,组织需要重视模型治理和风险管理,确保各个环节符合法规要求和伦理标准,以推动AI技术的可持续发展。
4. 模型校准的探索
4.1 模型校准的重要性
在设计适应性强且符合伦理的AI解决方案时,模型校准是一个关键环节。它能够改善模型概率估计,从而产生更准确的结果。通过将可持续性与模型训练和部署的概念相结合,我们可以实现可持续、适应性强的系统,促进协作和共享。
4.2 模型校准的实施
模型校准的实施需要综合考虑多个因素,以确保模型在不同场景下都能保持准确性和可靠性。以下是实施模型校准的一些步骤:
1.
数据收集与预处理
:收集多样化且具有代表性的数据,对数据进行清洗、归一化等预处理操作,以提高数据质量。
2.
基准模型选择
:选择合适的基准模型作为校准的基础,基准模型应具有良好的泛化能力和稳定性。
3.
校准方法选择
:根据具体问题和数据特点,选择合适的校准方法,如温度缩放、普拉特缩放等。
4.
校准过程监控
:在校准过程中,持续监控模型的性能指标,如准确率、召回率、F1值等,及时调整校准参数。
5.
校准后评估
:校准完成后,使用独立的测试数据集对校准后的模型进行评估,确保其性能得到显著提升。
4.3 模型校准的应用案例
为了更好地理解模型校准的实际应用,下面通过一个具体的案例进行说明。假设我们正在开发一个医疗诊断系统,用于预测患者是否患有某种疾病。初始模型在训练集上表现良好,但在实际应用中发现预测结果存在一定的偏差。通过对模型进行校准,我们可以提高预测的准确性,为医生提供更可靠的诊断建议。
阶段 | 准确率 | 召回率 | F1值 |
---|---|---|---|
校准前 | 80% | 75% | 77% |
校准后 | 85% | 82% | 83% |
从上述表格可以看出,经过校准后,模型的各项性能指标都得到了显著提升,说明模型校准在实际应用中具有重要的价值。
5. 构建可持续、适应性强的系统
5.1 可持续性与适应性的结合
构建可持续、适应性强的系统需要将可持续性原则融入到系统的设计、开发和运营过程中。同时,系统应具备良好的适应性,能够根据环境变化和用户需求进行动态调整。
5.2 构建步骤
以下是构建可持续、适应性强的系统的具体步骤:
1.
需求分析
:明确系统的功能需求、性能需求和可持续性需求,为系统设计提供依据。
2.
架构设计
:设计具有高可扩展性和灵活性的系统架构,以便在未来能够轻松应对变化。
3.
技术选型
:选择符合可持续性原则的技术和工具,如使用低能耗的硬件设备、采用高效的算法等。
4.
数据管理
:建立完善的数据管理机制,确保数据的安全、可靠和可持续利用。
5.
模型开发与优化
:开发高质量的机器学习模型,并不断进行优化和校准,以提高模型的性能和可持续性。
6.
系统集成与测试
:将各个组件集成到系统中,并进行全面的测试,确保系统的稳定性和可靠性。
7.
运营与维护
:建立持续的运营和维护机制,及时处理系统出现的问题,并根据用户反馈进行优化。
5.3 可持续、适应性强系统的优势
构建可持续、适应性强的系统具有以下优势:
-
降低成本
:通过采用可持续的技术和方法,降低系统的能耗和运营成本。
-
提高效率
:系统的高可扩展性和灵活性能够快速响应变化,提高业务处理效率。
-
增强竞争力
:在可持续发展的背景下,具备可持续性和适应性的系统能够提升企业的竞争力。
-
促进创新
:鼓励团队在系统设计和开发过程中不断探索新的技术和方法,推动创新发展。
6. 总结
通过对可持续AI模型开发、特征存储、模型校准以及构建可持续、适应性强系统的探讨,我们可以得出以下结论:
1.
可持续性是AI发展的必然趋势
:在开发AI解决方案时,应充分考虑可持续性因素,减少对环境的影响,实现经济、社会和环境的可持续发展。
2.
特征存储是AI模型开发的重要支撑
:合理设计和管理特征存储,能够提高模型的可解释性、隐私性和可持续性,促进数据和模型的共享与重用。
3.
模型校准是提高模型准确性的关键环节
:通过选择合适的校准方法和监控校准过程,可以改善模型的概率估计,产生更准确的结果。
4.
构建可持续、适应性强的系统是实现AI长期价值的保障
:将可持续性原则与系统的设计、开发和运营相结合,能够使系统在不断变化的环境中保持竞争力。
在未来的AI发展中,我们应继续深入研究和实践可持续性相关的技术和方法,推动AI技术向更加绿色、高效、可信的方向发展。通过跨领域的合作和创新,共同构建一个可持续发展的AI生态系统。
以下是整个流程的mermaid流程图,展示了从可持续模型开发到构建可持续、适应性强系统的完整过程:
graph LR
classDef startend fill:#F5EBFF,stroke:#BE8FED,stroke-width:2px;
classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
classDef decision fill:#FFF6CC,stroke:#FFBC52,stroke-width:2px;
A([开始]):::startend --> B(可持续AI模型开发):::process
B --> C(特征存储设计):::process
C --> D(模型校准):::process
D --> E(构建可持续、适应性强系统):::process
E --> F([结束]):::startend
以上就是关于可持续AI模型开发与特征存储的实践探索的全部内容,希望能够为相关领域的从业者和研究者提供有益的参考。