/*
http://acm.hdu.edu.cn/showproblem.php?pid=1520 Anniversary party
比较典型的树形dp,好题目!!!
给一棵树,要求取某一个节点(每一个点有权值)时不能取对应的父节点和子节点,问满足条件的方案权值最大为多少。
定义状态dp[i][0]表示不取i节点时的最大权值,dp[i][1]表示取i节点时的最大权值。
所以
dp[father][0] = max(dp[father][0] + dp[child][1] , dp[father][0] + dp[child][0])
dp[father][1] = dp[father][1] + dp[child][0] ;
在题目中,我们设一个0节点作为整个“森林”(因为不确定是不是树)的root节点;
我们只需要将结果递推到dp[0][0]即可。
题目中对数据的输入没有描述清楚,其实有多组测试数据,两组之间有0 0隔开,最后还有一个0结束,否则将无限TLE
*/
#pragma comment(linker, "/stack:64000000")
#define _CRT_SECURE_NO_DEPRECATE
#include <queue>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
using namespace std;
#define CLR(c,v) memset(c,v,sizeof(c))
template <typename _T>
_T Max(_T a , _T b){
return (a>b)?(a):(b);
}
template <typename _T>
_T Max(_T a , _T b, _T c){
return (a>Max(b,c))?(a):(Max(b,c));
}
template <typename _T>
_T Min(_T a , _T b){
return (a<b)?(a):(b);
}
template <typename _T>
_T Min(_T a , _T b, _T c){
return (a<Min(b,c))?(a):(Min(b,c));
}
const int inf = -(1<<30);
const int INF = (1<<30);
const double eps = 1e-8;
const int M = 6e4 +10;
vector <int > p[M];
int f[M];
int dp[M][2];
void dfs(int cur){
int size = p[cur].size();
for(int i = 0 ; i < size ; i++){
int child = p[cur][i];
dfs(child);
int father = cur;
dp[father][0] += Max(dp[child][0],dp[child][1]);
dp[father][1] += dp[child][0];
}
}
int main(){
//freopen("in.txt","r",stdin);
int n,v;
while(cin >> n && n!=0){
CLR(f,0);
CLR(dp,0);
p[0].clear();
for (int i = 1; i <= n ; i++){
scanf("%d" , &v);
f[i] = i;
dp[i][1] = v;
if(!p[i].empty())p[i].clear();
}
for (int a,b ,i=1; scanf("%d%d",&a,&b) && a!=0&&b!=0 ; i++){
p[b].push_back(a);
f[a] = b;
}
for (int i = 1 ; i <= n ; i++){ // 把森林或树的root加入0节点下
if(f[i] == i)
p[0].push_back(i);
}
dfs(0);
cout << dp[0][0] << endl;
}
return 0;
}