模式识别、机器学习和数据挖掘
文章平均质量分 71
Bookman
这个作者很懒,什么都没留下…
展开
-
一种基于Mercer核函数的聚类算法
传统的特点和本算法的特色传统的C-均值聚类算法,没有对样本特征进行优化,直接利用样本惊醒聚类,这样上述的这些方法的有效性很大程度的取决于样本的分布。 距离的选择我们假定样本x被非线性函数der(x)映射到高维特征空间,那么,我的的欧几里得距离有:distence(x,y) = sqrt( len( der(x) - der(y) ) ) = sqrt(der(x)*der(x) + der(y)*der(y) - 2*der(x)*der(y))显然,如果我门令K(x_i,x_j) =der(x_i) .*原创 2011-01-31 09:45:00 · 2116 阅读 · 1 评论 -
【模式识别】独立成分分析 ICA 中的几种方法
<br /> <br /> K-L 变换,也就是PCA,得到的是MSE下的最优结构,但有时对于分类效果并不是很好。所以我们引入了ICA。如果是PCA是使二阶积累量为0的话,那么ICA就是前四阶积累量都是0.那ICA是什么意思呢?<br />类别信息的源头是一组独立的分量,但是类别信息表现出来的是一组互相相关的分量,当然这组分量的个数应该大于独立分量的个数。我们的任务就是去除这种互相关;使分量由相关的一组,变为无关的一组,也就是独立成分。<br /> 那具体该怎么做呢?我们一下有这么三个方法:<br /> <原创 2011-05-28 16:38:00 · 1834 阅读 · 0 评论