一种基于Mercer核函数的聚类算法

本文介绍了一种基于Mercer核函数的聚类算法,通过非线性映射将样本转换到高维特征空间,选择合适的K函数(如多项式、高斯、神经网络核函数),优化聚类效果。算法包括确定类别数、初始化聚类中心、计算从属矩阵、修改核函数矩阵等步骤,以最小化误差并实现更有效的聚类。
摘要由CSDN通过智能技术生成

 

传统的特点和本算法的特色

传统的C-均值聚类算法,没有对样本特征进行优化,直接利用样本惊醒聚类,这样上述的这些方法的有效性很大程度的取决于样本的分布。

 

 

距离的选择

我们假定样本x被非线性函数der(x)映射到高维特征空间,那么,我的的欧几里得距离有:

distence(x,y) = sqrt( len( der(x) - der(y) ) ) = sqrt(der(x)*der(x) + der(y)*der(y) - 2*der(x)*der(y))

显然,如果我门令K(x_i,x_j) =der(x_i) .* der(x_y)的话,那么有:

distence(x,y) = sqrt( K(x,x) - 2*K(x,y) +K(y,y) );

 

这样我们就把非线性函数映射der为K(二元标量函数)了。

 

K函数的选择

这个部分理论比较深,我就简单给出几个好用的例子:

(1)多项式核函数:K(x,y) = (x.*y + 1)^d ;d为整数。

&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值