给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字。
例如,从根到叶子节点路径 1->2->3 代表数字 123。
计算从根到叶子节点生成的所有数字之和。
说明: 叶子节点是指没有子节点的节点。
示例 1:
输入: [1,2,3]
1
/ \
2 3
输出: 25
解释:
从根到叶子节点路径 1->2 代表数字 12.
从根到叶子节点路径 1->3 代表数字 13.
因此,数字总和 = 12 + 13 = 25.
示例 2:
输入: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
输出: 1026
解释:
从根到叶子节点路径 4->9->5 代表数字 495.
从根到叶子节点路径 4->9->1 代表数字 491.
从根到叶子节点路径 4->0 代表数字 40.
因此,数字总和 = 495 + 491 + 40 = 1026.
这个题是一个很明显的深度优先搜索题,向子节点传递值时都是要将自己节点的值乘10的,可以用递归,也可以用迭代,迭代的写法基本和路径之和1一样。
C++源代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int sumNumbers(TreeNode* root) {
return DFS(root, 0);
}
int DFS(TreeNode* root, int sum){
if (!root) return 0;
sum = sum * 10 + root->val;
if (!root->left && !root->right)
return sum;
return DFS(root->left, sum) + DFS(root->right, sum);
}
};
python3源代码:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def sumNumbers(self, root: TreeNode) -> int:
if root==None: return 0
res = 0
s = [root]
while len(s)!=0:
p = s.pop()
if p.left==None and p.right==None:
res += p.val
if p.right:
p.right.val += p.val * 10
s.append(p.right)
if p.left:
p.left.val += p.val * 10
s.append(p.left)
return res