自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 [百其]期望风险与泛化误差(generalization error)

Rexp(f^)=Ep[L(Y,f^(X))]=∫X∗YL(y,f^(x))P(x,y)dxdyR_{exp}(\hat{f})=E_p[L(Y,\hat{f}(X))]=\int_{\mathcal{X}*\mathcal{Y}}L(y,\hat{f}(x))P(x,y)dxdyRexp​(f^​)=Ep​[L(Y,f^​(X))]=∫X∗Y​L(y,f^​(x))P(x,y)dxdy

2020-05-28 11:11:29 717

原创 [百其]交叉熵损失函数

预测值 y^=P(y=1∣x) \displaystyle \hat y = P(y=1|x) y^​=P(y=1∣x) 1−y^=P(y=0∣x) 1-\displaystyle \hat y = P(y=0|x) 1−y^​=P(y=0∣x) p(y∣x)=y^y(1−y^)1−y p(y|x) = \hat y ^ y (1- \hat y)^{1-y} p(y∣x)=y^​y(1−y^​)...

2019-11-08 11:07:16 133

原创 [百其]梯度下降

梯度下降用途方法 用途 gradient descent / steepest descent 是求解无约束问题的最常用方法,实现简单。是一种迭代方法,每一步求解目标函数的梯度向量。 方法 假设 f(x)是RnR^nRn 上有一阶连续编导数的函数,要求解的无约束最优化问题是 min⁡x∈Rnf(x)\displaystyle\min_{x \isin R^n} f(x)x∈Rnmin​f(x) 一...

2019-11-08 10:29:57 95

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除