算法
x97
这个作者很懒,什么都没留下…
展开
-
[百其]期望风险与泛化误差(generalization error)
Rexp(f^)=Ep[L(Y,f^(X))]=∫X∗YL(y,f^(x))P(x,y)dxdyR_{exp}(\hat{f})=E_p[L(Y,\hat{f}(X))]=\int_{\mathcal{X}*\mathcal{Y}}L(y,\hat{f}(x))P(x,y)dxdyRexp(f^)=Ep[L(Y,f^(X))]=∫X∗YL(y,f^(x))P(x,y)dxdy原创 2020-05-28 11:11:29 · 717 阅读 · 0 评论 -
[百其]交叉熵损失函数
预测值 y^=P(y=1∣x) \displaystyle \hat y = P(y=1|x) y^=P(y=1∣x) 1−y^=P(y=0∣x) 1-\displaystyle \hat y = P(y=0|x) 1−y^=P(y=0∣x) p(y∣x)=y^y(1−y^)1−y p(y|x) = \hat y ^ y (1- \hat y)^{1-y} p(y∣x)=y^y(1−y^)...原创 2019-11-08 11:07:16 · 133 阅读 · 0 评论 -
[百其]梯度下降
梯度下降用途方法 用途 gradient descent / steepest descent 是求解无约束问题的最常用方法,实现简单。是一种迭代方法,每一步求解目标函数的梯度向量。 方法 假设 f(x)是RnR^nRn 上有一阶连续编导数的函数,要求解的无约束最优化问题是 minx∈Rnf(x)\displaystyle\min_{x \isin R^n} f(x)x∈Rnminf(x) 一...原创 2019-11-08 10:29:57 · 95 阅读 · 0 评论