汉诺塔问题

题目来源:OpenJudge 6261:汉诺塔问题

前言:还是那句话,本人新手小白,代码写的可能不太好,但题解都正确,请慎重使用。

注:AC代码在最后。

题目描述:

约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到中间的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。
这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615
这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算机解决64层的汉诺塔。

假定圆盘从小到大编号为1, 2, ...

输入格式:

输入为一个整数后面跟三个单字符字符串。
整数为盘子的数目,后三个字符表示三个杆子的编号。

输出格式:

输出每一步移动盘子的记录。一次移动一行。
每次移动的记录为例如 a->3->b 的形式,即把编号为3的盘子从a杆移至b杆。

样例输入:

2 a b c

样例输出:

a->1->c

a->2->b

c->1->b

分析:

这道题源于一个有趣的游戏——汉诺塔。

 游戏主要玩法就是通过移动不同大小的盘子,使盘子在C上按从上往下依次为1-n后胜利,在移动过程中,大盘不能移到小盘上。

思路:

本题不同于上面的游戏,上面的游戏是把A盘上的放在C盘上,这道题则是最后要放于B盘上,所以代码内容也会有变化。

首先先开一个新的函数命名为hanoi:

​
#include<iostream> 
using namespace std;
void hanoi(int n,char a,char c,char b)//n为盘数,a、b、c代表三根柱子,注意要用void
{
	if(n==0) return ;//判定是否返回
	hanoi(n-1,a,b,c);//注意是n-1
	cout<<a<<"->"<<n<<"->"<<b<<endl;//判定完后a、b、c的值都会有改变,同时要注意输出格式
	hanoi(n-1,c,a,b);//注意是n-1
}

​

 上面这个代码就可以把游戏的每一步输出,接下来完善一下main里的代码:

int main()
{
	int n;
	char a,b,c;
	cin>>n>>a>>b>>c;
	hanoi(n,a,c,b);//使用函数hanoi
	return 0;
}

 将这两部分组合后就能AC啦!

AC代码:

#include<iostream> 
using namespace std;
void hanoi(int n,char a,char c,char b)
{
	if(n==0) return ;
	hanoi(n-1,a,b,c);
	cout<<a<<"->"<<n<<"->"<<b<<endl;
	hanoi(n-1,c,a,b);
}
int main()
{
	int n;
	char a,b,c;
	cin>>n>>a>>b>>c;
	hanoi(n,a,c,b);
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值