C++解数独问题

题目描述
数独是根据 9×9 盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫内的数字均含 1−9 ,不重复。每一道合格的数独谜题都有且仅有唯一答案,推理方法也以此为基础,任何无解或多解的题目都是不合格的。

芬兰一位数学家号称设计出全球最难的“数独游戏”,并刊登在报纸上,让大家去挑战。

这位数学家说,他相信只有“智慧最顶尖”的人才有可能破解这个“数独之谜”。

据介绍,目前数独游戏的难度的等级有一到五级,一是入门等级,五则比较难。不过这位数学家说,他所设计的数独游戏难度等级是十一,可以说是所以数独游戏中,难度最高的等级。他还表示,他目前还没遇到解不出来的数独游戏,因此他认为“最具挑战性”的数独游戏并没有出现。

输入格式
一个未填的数独。

输出格式
填好的数独。

输入输出样例

输入 #1
8 0 0 0 0 0 0 0 0 
0 0 3 6 0 0 0 0 0 
0 7 0 0 9 0 2 0 0 
0 5 0 0 0 7 0 0 0 
0 0 0 0 4 5 7 0 0 
0 0 0 1 0 0 0 3 0 
0 0 1 0 0 0 0 6 8 
0 0 8 5 0 0 0 1 0 
0 9 0 0 0 0 4 0 0

输出 #1
8 1 2 7 5 3 6 4 9 
9 4 3 6 8 2 1 7 5 
6 7 5 4 9 1 2 8 3 
1 5 4 2 3 7 8 9 6 
3 6 9 8 4 5 7 2 1 
2 8 7 1 6 9 5 3 4 
5 2 1 9 7 4 3 6 8 
4 3 8 5 2 6 9 1 7 
7 9 6 3 1 8 4 5 2

分析:

这道题要在你理解八皇后问题后才能做,它不同于八皇后问题只有0和1,数独输入0-9,输出1-9,简单说就是需要同时满足多种要求。

首先要先在main函数中写输入:

//这里记得定义一个全局变量a[10][10]
int main()
{
	int i,j,k;
	for(i=1;i<=9;i++)//一个简单的数组输入代码
	{
		for(j=1;j<=9;j++)
		{
			cin>>a[i][j];
		}
	}
	sd(1,1);//使用数独函数
	return 0;
}

然后看这张图:

根据这幅图,我们可以看出每一横排、每一竖排、每个小九宫格中都要有1-9这九个数字,所以我们需要在输入里添加三个数组去判断:

//m[10][10]、n[10][10]、f[10][10][10]都是全局定义
int main()
{
	int i,j,k;
	for(i=1;i<=9;i++)
	{
		for(j=1;j<=9;j++)
		{
			cin>>a[i][j];
			k=a[i][j];//k为当前输入的数
			m[i][k]=1;//标记当前行含有输入的数
			n[j][k]=1;//标记当前列含有输入的数
			f[(i+2)/3][(j+2)/3][k]=1;//标记当前九宫格含有输入的数(解析在下面)
		}
	}
	sd(1,1);
	return 0;
}

f数组判断方式的解析:

因为一共有九个九宫格,可以用(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)去表示,(用当前输入数的行数+2)去除3就可以表示它在哪一行的九宫格中,同理(用当前输入数的列数+2)去除3也可以表示它在哪一列的九宫格中,最后一个括号中的数标记输入的数在算出的九宫格中存在。

接着我们可以开始写推出数独的代码:

void sd(int x,int y)
{
	int i;
	if(x==9&&y==10) Pout();//如果判断到最后一行且判断完最后一列,输出数独
	if(y==10) sd(x+1,1);如果判断到最后一列(当前非最后一行),判断下一行
	if(a[x][y]!=0) sd(x,y+1);//如果当前数不为0(0相当于填数的地方)
	else
	{
		for(i=1;i<=9;i++)
		{
			if(m[x][i]==0&&n[y][i]==0&&f[(x+2)/3][(y+2)/3][i]==0)//判断当前数是否能填入
			{
				a[x][y]=i;//把0替换为当前数
				m[x][i]=1,n[y][i]=1,f[(x+2)/3][(y+2)/3][i]=1;//将相应的判断改为有
				sd(x,y+1);//判断下一个数
				a[x][y]=0;//清空当前数
				m[x][i]=0,n[y][i]=0,f[(x+2)/3][(y+2)/3][i]=0;//清空标记
			}
		}
	}

为了让代码更简单,这里创一个新函数Pout作为输出代码:

void Pout()
{
	int i,j;
	for(i=1;i<=9;i++)//输出
	{
		for(j=1;j<=9;j++)
		{
			cout<<a[i][j]<<" ";
		}
		cout<<endl;
	}
	exit(0);//结束
}

将他们组合起来,就能得到AC代码了! 

AC代码:

#include<iostream>
using namespace std;
int a[10][10],m[10][10],n[10][10],f[10][10][10];
void Pout()
{
	int i,j;
	for(i=1;i<=9;i++)
	{
		for(j=1;j<=9;j++)
		{
			cout<<a[i][j]<<" ";
		}
		cout<<endl;
	}
	exit(0);
}
void sd(int x,int y)
{
	int i;
	if(x==9&&y==10) Pout();
	if(y==10) sd(x+1,1);
	if(a[x][y]!=0) sd(x,y+1);
	else
	{
		for(i=1;i<=9;i++)
		{
			if(m[x][i]==0&&n[y][i]==0&&f[(x+2)/3][(y+2)/3][i]==0)
			{
				a[x][y]=i;
				m[x][i]=1,n[y][i]=1,f[(x+2)/3][(y+2)/3][i]=1;
				sd(x,y+1);
				a[x][y]=0;
				m[x][i]=0,n[y][i]=0,f[(x+2)/3][(y+2)/3][i]=0;
			}
		}
	}
	
}
int main()
{
	int i,j,k;
	for(i=1;i<=9;i++)
	{
		for(j=1;j<=9;j++)
		{
			cin>>a[i][j];
			k=a[i][j];
			m[i][k]=1;
			n[j][k]=1;
			f[(i+2)/3][(j+2)/3][k]=1;
		}
	}
	sd(1,1);
	return 0;
}

一个简单的数独的小程序 //***求数独,参数mod为0或1,time0为搜索开始时的时间,mod=0时仅检查Data1中数独是否有,有则抛出1,mod=1时求出所有并输出*** { int i,j,im=-1,jm,min=10; int mark[10]; for(i=0;i<9;i++) { for(j=0;j<9;j++) { if(Data1[i][j]) //如果该位置有数据则跳过 { continue; } int c=Uncertainty(i,j,mark); //如果该位置为空则先求不确定度 if(c==0) //如果不确定度为0则表示该数独 { return; } if(c<min) //得到不确定度最小的位置(第im行 第jm列 不确定度为min) { im=i; jm=j; min=c; } } } if(im==-1) //所有位置都已经确定,数独已经出,按要求输出 { if(mod==1) //显示所有 { if(IsSolved()==true) { if(Solutions++<MAXANSNUM) { cout<<"第 "<<Solutions<<" 个 :"<<endl; Display(1); } if((time(NULL)-time0)>TIMEOUT) { throw(Solutions); } } return; } else //只给出一个 { throw(1); //跳出所有递归调用,返回1 } } Uncertainty(im,jm,mark); //从不确定度最小的位置开始 for(i=1;i<=9;i++) { if(mark[i]==0) { Data1[im][jm]=i; //对不确定度最小的位置尝试可能的赋值 Search(mod,time0); //递归调用 } } Data1[im][jm]=0; } void Csudoku::Set(int n) //***随机生成数独,参数n表示数独中待填元素个数*** { srand((unsigned)time(NULL)); int i,j,k; do { for(i=0;i<9;i++) //随机给每行的某一个位置赋值 { for(j=0;j<9;j++) { Data1[i][j]=0; } j=rand()%9; Data1[i][j]=i+1; } } while(!Solve(0)); //按照随机赋的值给出一个 for(k=0;k<n;) //从中随机去掉n个数据 { i=rand()%81; j=i%9; i=i/9; if(Data1[i][j]>0) { Data1[i][j]=0; k++; } } for(i=0;i<9;i++) //将生成的数独存入Data0数组 { for(j=0;j<9;j++) { Data0[i][j]=Data1[i][j]; } } }
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值