BZOJ 1013 [JSOI2008]球形空间产生器 - 高斯消元

列n个距离公式,消去二次方项,然后大模拟列个方程,gauss消元解一下即可。


我原来背的gauss消元的板子竟然会爆double。。。于是找的hzwer学长的板子抄了抄。。。


#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>

using namespace std;

const int maxn=25;
const double eps=1e-5;

int n;
int p[maxn];
double a[maxn][maxn],init[maxn][maxn],ans[maxn];

void gauss_elimination()
{
	int now=1;
	for(int i=1;i<=n;i++,now++)
	{
		int tmp;
		for(tmp=now;tmp<=n;tmp++)
			if(fabs(a[tmp][i])>0)break;
		if(tmp!=now)
			for(int j=1;j<=n+1;j++)
				swap(a[tmp][j],a[now][j]);
		double key=a[now][i];
		for(int i=1;i<=n+1;i++)
			a[now][i]/=key;
		for(int j=1;j<=n;j++)if(now!=j)
		{
			key=a[j][i];
			for(int k=1;k<=n+1;k++)
				a[j][k]-=key*a[now][k];
		}
	}
	for(int i=1;i<n;i++)printf("%.3lf ",a[i][n+1]);
	printf("%.3lf",a[n][n+1]);
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n+1;i++)
	{
		for(int j=1;j<=n;j++)
			scanf("%lf",&init[i][j]);
	}
	for(int i=1;i<=n;i++)
		a[1][i]+=-2.0*init[1][i],a[1][n+1]-=init[1][i]*init[1][i];
	for(int i=2;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
			a[i-1][j]-=-2.0*init[i][j],a[i-1][n+1]+=init[i][j]*init[i][j];
		for(int j=1;j<=n;j++)
			a[i][j]+=-2.0*init[i][j],a[i][n+1]-=init[i][j]*init[i][j];
	}
	for(int i=1;i<=n;i++)
		a[n][i]-=-2.0*init[n+1][i],a[n][n+1]+=init[n+1][i]*init[n+1][i];
	gauss_elimination();
	return 0;
} 


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值