BZOJ 2004 [Hnoi2010]Bus 公交线路 - 状压DP+矩阵快速幂

看数据范围,算法一目了然,然而。。。并不会啊

由于p位的限制,所有车一定在p位的限制内转移,于是考虑这样的状压:
设一个p位的二进制码,以第一辆车作为视角向后p位,要求p位之内有k辆车。而且由于是以第一辆车作为视角,于是第一位一定是1。设立dp数组dp i j,表示第一辆车在坐标i处,其后的状态为j,dp转移方程为: dp[i][S]=dp[i1][S]r[S][S] ,其中要求S可以转移到S’的状态,r为转移数组。后边的式子可以用矩阵优化,由于所有车谁先走是无所谓的,状态数即答案。

解释一下能否进行转移的判断:由于S’的整体坐标比S后1位,于是给S整体左移一位,末尾由于无车一定补0,。由于必然是S的k位中的一位到了S’第一位的位置,于是后p位S<<1一定比S’多一个0,即此位的1转移到了开头。

一般这种可以列出转移矩阵的,一般用矩阵加速幂

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>

using namespace std;

const int maxn=210;
const int mod=30031;

int n,k,m,p,cnt,Begin;
int shaker[maxn];

struct Matrix
{
    int m[maxn][maxn];
}A,B;

int getnum(int x)
{
    int res=0;
    while(x)
    {
        x-=x&-x;
        res++;
    }
    return res;
}
bool Transfer(int From,int To)
{
    From=(From<<1)-(1<<p);//from左移一位且末位用0补齐 
    return getnum(From^To)==1;//To比From有一位多1,代表此位原来的车从此地出发到了开头 
}
Matrix mul(Matrix x,Matrix y)
{
    Matrix tmp;
        memset(tmp.m,0,sizeof tmp.m);
        for(int i=1;i<=cnt;i++)
            for(int j=1;j<=cnt;j++)
                for(int k=1;k<=cnt;k++)
                    tmp.m[i][j]=(tmp.m[i][j]+x.m[i][k]*y.m[k][j])%mod;
        return tmp;

}
Matrix pow(Matrix x,int y)
{
    y--;
    Matrix basic=x;
    while(y)
    {
        if(y&1)x=mul(x,basic);
        basic=mul(basic,basic);
        y>>=1;
    }
    return x;
}
int main()
{
    scanf("%d%d%d",&n,&k,&p);
    for(int i=(1<<(p-1));i<=(1<<p)-1;i++)//筛出合法情况 
    {
        if(getnum(i)==k)//p格中恰有k个1 
        {
            shaker[++cnt]=i;
            if(i==(1<<p)-(1<<(p-k)))Begin=cnt;//寻找初始/终止状态 
        }
    }
    for(int i=1;i<=cnt;i++)//构造转移矩阵 
        for(int j=1;j<=cnt;j++)
            B.m[i][j]=Transfer(shaker[i],shaker[j]);//查询是否可以转移 
    A.m[1][Begin]=1;//初值 
    B=pow(B,n-k);//终止状态第一位坐标-初始状态第一位坐标=n-k 
    A=mul(A,B);
    printf("%d",A.m[1][Begin]);
    return 0;
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值