POJ - 3253 Fence Repair(哈夫曼树+优先队列)

Fence Repair
Time Limit: 2000MS Memory Limit: 65536K
Description

Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needs N (1 ≤ N ≤ 20,000) planks of wood, each having some integer length Li (1 ≤ Li ≤ 50,000) units. He then purchases a single long board just long enough to saw into the N planks (i.e., whose length is the sum of the lengths Li). FJ is ignoring the "kerf", the extra length lost to sawdust when a sawcut is made; you should ignore it, too.
FJ sadly realizes that he doesn't own a saw with which to cut the wood, so he mosies over to Farmer Don's Farm with this long board and politely asks if he may borrow a saw.
Farmer Don, a closet capitalist, doesn't lend FJ a saw but instead offers to charge Farmer John for each of the N-1 cuts in the plank. The charge to cut a piece of wood is exactly equal to its length. Cutting a plank of length 21 costs 21 cents.
Farmer Don then lets Farmer John decide the order and locations to cut the plank. Help Farmer John determine the minimum amount of money he can spend to create the N planks. FJ knows that he can cut the board in various different orders which will result in different charges since the resulting intermediate planks are of different lengths.

Input

Line 1: One integer N, the number of planks
Lines 2..N+1: Each line contains a single integer describing the length of a needed plank
Output
Line 1: One integer: the minimum amount of money he must spend to make N-1 cuts
Sample Input

3
8
5
8
Sample Output

34
Hint

He wants to cut a board of length 21 into pieces of lengths 8, 5, and 8.

The original board measures 8+5+8=21. The first cut will cost 21, and should be used to cut the board into pieces measuring 13 and 8. The second cut will cost 13, and should be used to cut the 13 into 8 and 5. This would cost 21+13=34. If the 21 was cut into 16 and 5 instead, the second cut would cost 16 for a total of 37 (which is more than 34).

(1) 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点)；
(2) 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和；
(3)从森林中删除选取的两棵树,并将新树加入森林；

(4)重复(2)、(3)步,直到森林中只剩一棵树为止

60
/            \
23                  37
/       \             /      \
F(11) B(12)  17      D(20)
/    \
A(8)   9
/     \

E(4)  C(5)

#include <stdio.h>
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
#include <string.h>
#define ll long long
using namespace std;
bool cmp(ll a,ll b)
{
return a>b;
}
priority_queue<ll,vector<ll>,greater<ll> > que;
int main ()
{
ll m,n;
while (~scanf ("%lld",&n)){
ll i,j,len = 0,ans = 0;
for (i = 0;i < n; i++){
ll a;
scanf ("%lld",&a);
len += a;
que.push(a);
}

while (!que.empty()){
ll a = que.top();
que.pop();
if (que.empty()){//如果只剩一个了那么说明只剩根节点无法构造。
break;
}
ll b = que.top();
que.pop();
ans += a+b;//计算树的带权路径长度
que.push(a+b);//取出两个合并后压入一个。
}
cout << ans << endl;
}
return 0;
}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120