元组
元组的特点:
1. 有序,可以重复,这一点和列表一样
2. 元组中的元素不能修改,这一点非常重要,深度学习场景中很多参数、形状定义好了确保后续不能被修改。
很多流行的 ML/DL 库(如 TensorFlow, PyTorch, NumPy)在其 API 中都广泛使用了元组来表示形状、配置等。
可以看到,元组最重要的功能是在列表之上,增加了不可修改这个需求。
元组的创建
my_tuple1 = (1, 2, 3)
my_tuple2 = ('a', 'b', 'c')
my_tuple3 = (1, 'hello', 3.14, [4, 5]) # 可以包含不同类型的元素
print(my_tuple1)
print(my_tuple2)
print(my_tuple3)
(1, 2, 3)
('a', 'b', 'c')
(1, 'hello', 3.14, [4, 5])
# 可以省略括号
my_tuple4 = 10, 20, 'thirty' # 逗号是关键
print(my_tuple4)
print(type(my_tuple4)) # 看看它的类型
(10, 20, 'thirty')
<class 'tuple'>
# 创建空元组
empty_tuple = ()
# 或者使用 tuple() 函数
empty_tuple2 = tuple()
print(empty_tuple)
print(empty_tuple2)
()
()
元组的常见用法
# 元组的索引
my_tuple = ('P', 'y', 't', 'h', 'o', 'n')
print(my_tuple[0]) # 第一个元素
print(my_tuple[2]) # 第三个元素
print(my_tuple[-1]) # 最后一个元素
P
t
n
# 元组的切片
my_tuple = (0, 1, 2, 3, 4, 5)
print(my_tuple[1:4]) # 从索引 1 到 3 (不包括 4)
print(my_tuple[:3]) # 从开头到索引 2
print(my_tuple[3:]) # 从索引 3 到结尾
print(my_tuple[::2]) # 每隔一个元素取一个
(1, 2, 3)
(0, 1, 2)
(3, 4, 5)
(0, 2, 4)
# 元组的长度获取
my_tuple = (1, 2, 3)
print(len(my_tuple))
3
管道工程中pipeline类接收的是一个包含多个小元组的 列表 作为输入。
可以这样理解这个结构:
1. 列表 []: 定义了步骤执行的先后顺序。Pipeline 会按照列表中的顺序依次处理数据。之所以用列表,是未来可以对这个列表进行修改。
2. 元组 (): 用于将每个步骤的名称和处理对象捆绑在一起。名称用于在后续访问或设置参数时引用该步骤,而对象则是实际执行数据转换或模型训练的工具。固定了操作名+操作
不用字典因为字典是无序的。
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score
# 1. 加载数据
iris = load_iris()
X = iris.data
y = iris.target
# 2. 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 3. 构建管道
# 管道按顺序执行以下步骤:
# - StandardScaler(): 标准化数据(移除均值并缩放到单位方差)
# - LogisticRegression(): 逻辑回归分类器
pipeline = Pipeline([
('scaler', StandardScaler()),
('logreg', LogisticRegression())
])
# 4. 训练模型
pipeline.fit(X_train, y_train)
# 5. 预测
y_pred = pipeline.predict(X_test)
# 6. 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f"模型在测试集上的准确率: {accuracy:.2f}")
模型在测试集上的准确率: 1.00
可迭代对象
可迭代对象 (Iterable) 是 Python 中一个非常核心的概念。简单来说,一个可迭代对象就是指那些能够一次返回其成员(元素)的对象,让你可以在一个循环(比如 for 循环)中遍历它们。
Python 中有很多内置的可迭代对象,目前我们见过的类型包括:
序列类型 (Sequence Types):
list (列表)
tuple (元组)
str (字符串)
range (范围)
集合类型 (Set Types):
set (集合)
字典类型 (Mapping Types):
dict (字典) - 迭代时返回键 (keys)
文件对象 (File objects)
生成器 (Generators)
迭代器 (Iterators) 本身
# 列表 (list)
print("迭代列表:")
my_list = [1, 2, 3, 4, 5]
for item in my_list:
print(item)
迭代列表:
1
2
3
4
5
# 元组 (tuple)
print("迭代元组:")
my_tuple = ('a', 'b', 'c')
for item in my_tuple:
print(item)
迭代元组:
a
b
c
# 字符串 (str)
print("迭代字符串:")
my_string = "hello"
for char in my_string:
print(char)
迭代字符串:
h
e
l
l
o
# range (范围)
print("迭代 range:")
for number in range(5): # 生成 0, 1, 2, 3, 4
print(number)
迭代 range:
0
1
2
3
4
# 字典 (dict) - 默认迭代时返回键 (keys)
print("迭代字典 (默认迭代键):")
my_dict = {'name': 'Alice', 'age': 30, 'city': 'Singapore'}
for key in my_dict:
print(key)
迭代字典 (默认迭代键):
name
age
city
# 迭代字典的值 (values)
print("迭代字典的值:")
for value in my_dict.values():
print(value)
迭代字典的值:
Alice
30
Singapore
# 迭代字典的键值对 (items)
print("迭代字典的键值对:")
for key, value in my_dict.items(): # items方法很好用
print(f"Key: {key}, Value: {value}")
迭代字典的键值对:
Key: name, Value: Alice
Key: age, Value: 30
Key: city, Value: Singapore
OS模块
随着深度学习项目变得越来越大、数据量越来越多、代码结构越来越复杂,你会越来越频繁地用到 os 模块来管理文件、目录、路径,以及进行一些基本的操作系统交互。虽然深度学习的核心在于模型构建和训练,但数据和模型的有效管理是项目成功的关键环节,而 os 模块为此提供了重要的工具。
在简单的入门级项目中,你可能只需要使用 pd.read_csv() 加载数据,而不需要直接操作文件路径。但是,当你开始处理图像数据集、自定义数据加载流程、保存和加载复杂的模型结构时,os 模块就会变得非常有用。
好的代码组织和有效的文件管理是大型深度学习项目的基石。os 模块是实现这些目标的重要组成部分。
import os
# os是系统内置模块,无需安装
获取当前工作目录
os.getcwd() # get current working directory 获取当前工作目录的绝对路径
'c:\\Users\\dell\\Desktop\\python60-days-challenge-master'
获取当前工作目录下的文件列表
os.listdir() # list directory 获取当前工作目录下的文件列表
['chronic_patients.csv', 'data.csv', 'elbow_method.png', 'feature_correlation_heatmap.png', 'feature_importance.png', 'gender_submission.csv', 'heart.csv', 'J.ipynb', 'python60-days-challenge-master', 'shap_dependence_plots.png', 'shap_feature_importance.png', 'shap_summary_plot.png', 'test.csv', 'train.csv', 'xindai.ipynb']
# 我们使用 r'' 原始字符串,这样就不需要写双反斜杠 \\,因为\会涉及到转义问题
path_a = r'C:\Users\YourUsername\Documents' # r''这个写法是写给python解释器看,他只会读取引号内的内容,不用在意r的存在会不会影响拼接
path_b = 'MyProjectData'
file = 'results.csv'
# 使用 os.path.join 将它们安全地拼接起来,os.path.join 会自动使用 Windows 的反斜杠 '\' 作为分隔符
file_path = os.path.join(path_a , path_b, file)
file_path
'C:\\Users\\YourUsername\\Documents\\MyProjectData\\results.csv'
环境变量方法
# os.environ 表现得像一个字典,包含所有的环境变量
os.environ
# 使用 .items() 方法可以方便地同时获取变量名(键)和变量值,之前已经提过字典的items()方法,可以取出来键和值
# os.environ是可迭代对象
for variable_name, value in os.environ.items():
# 直接打印出变量名和对应的值
print(f"{variable_name}={value}")
# 你也可以选择性地打印总数
print(f"\n--- 总共检测到 {len(os.environ)} 个环境变量 ---")
目录树
os.walk() 是 Python os 模块中一个非常有用的函数,它用于遍历(或称“行走”)一个目录树。
核心功能:
os.walk(top, topdown=True, οnerrοr=None, followlinks=False) 会为一个目录树生成文件名。对于树中的每个目录(包括 top 目录本身),它会 yield(产生)一个包含三个元素的元组 (tuple):
(dirpath, dirnames, filenames)
1. dirpath: 一个字符串,表示当前正在访问的目录的路径。
2. dirnames: 一个列表(list),包含了 dirpath 目录下所有子目录的名称(不包括 . 和 ..)。
3. filenames: 一个列表(list),包含了 dirpath 目录下所有非目录文件的名称。
总结:
`os.walk` 会首先访问起始目录 (`my_project`),然后它会选择第一个子目录 (`data`) 并深入进去,访问 `data` 目录本身,然后继续深入它的子目录 (`processed` -> `raw`)。只有当 `data` 分支下的所有内容都被访问完毕后,它才会回到 `my_project` 这一层,去访问下一个子目录 (`src`),并对 `src` 分支重复深度优先的探索。
它不是按层级(先访问所有第一层,再访问所有第二层)进行的,而是按分支深度进行的。这种策略被称之为深度优先。
import os
start_directory = os.getcwd() # 假设这个目录在当前工作目录下
print(f"--- 开始遍历目录: {start_directory} ---")
for dirpath, dirnames, filenames in os.walk(start_directory):
print(f" 当前访问目录 (dirpath): {dirpath}")
print(f" 子目录列表 (dirnames): {dirnames}")
print(f" 文件列表 (filenames): {filenames}")
# # 你可以在这里对文件进行操作,比如打印完整路径
# print(" 文件完整路径:")
# for filename in filenames:
# full_path = os.path.join(dirpath, filename)
# print(f" - {full_path}")