CSP 201509-4 高速公路

tarjan求强连通分量块,然后每个块的相互可达的点的对数就是 C n 2 C_{n}^{2} Cn2,加起来即可

#include <cstdio>
#include <stack>
#include <cstring>
#include <climits>
#include <algorithm>

const int MAXN = 1e4 + 2;
const int MAXM = 1e5 + 2;

struct Edge {
    int to, next;
} edge[MAXM << 1];

static std::stack<int> s;

int tot, n, m, index, cnt, ans;
int pre[MAXN], dfn[MAXN], low[MAXN];
bool vis[MAXN];;

void addEdge(int u, int v) {
    tot++;
    edge[tot].to = v;
    edge[tot].next = pre[u];
    pre[u] = tot;
}

void tarjan(int x) {
    dfn[x] = low[x] = ++cnt;
    s.push(x);      vis[x] = true;
    for (int i = pre[x]; i; i = edge[i].next) {
        if (!dfn[edge[i].to]) {
            tarjan(edge[i].to);
            low[x] = std::min(low[x], low[edge[i].to]);
        }
        else if (vis[edge[i].to]) {
            low[x] = std::min(low[x], dfn[edge[i].to]);
        }
    }
    if (low[x] == dfn[x]) {
        int prev, cnt = 0;
        do {
            //printf("%d ", s.top());
            cnt++;
            vis[s.top()] = false;
            prev = s.top();
            s.pop();
        } while (x != prev);
        //printf("\n");
        if (cnt >= 2) ans += cnt * (cnt - 1) / 2;
    }
    return;
}

int main()
{
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= m; i++) {
        int u, v;
        scanf("%d %d", &u, &v);
        addEdge(u, v);
    }
    for (int i = 1; i <= n; i++)
        if (!dfn[i]) tarjan(i);
    printf("%d\n", ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值