ccf csp-201509-4-高速公路(Tarjan算法求强连通分量)

本文深入讲解了Tarjan算法,一种高效求解强连通分量的图论算法。通过介绍算法的基本思想,如深搜与回溯机制,以及具体实现细节,如dfn和low值的更新,帮助读者理解如何利用Tarjan算法识别图中的强连通分量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原试题点击此处

强连通分量概念:
 强连通分量中的结点能够相互到达。
Tarjan算法思想:

两条腿走路

  • 一条腿深搜下去
  • 一条腿回看(能不能回到自己本身)
    在这里插入图片描述
    如果从一个结点出发能回到这个结点本身,就构成了一个回路(轮回),回路中的点因为处于轮回中自然能够相互到达,即该回路也就构成了一个强连通分量
Tarjan算法采用的数据结构:
  • dfn:记录时间戳,即访问结点的先后时间顺序(深搜
    low:记录能够返回的最浅的时间戳(回看
每次深搜/回看完了以后,都要更新一下low值。
  • stack栈来记录强连通分量中具体的点:
1、每访问一次结点,就让结点入栈。
2、遇到dfn=low的点(即能从自己出发回到自己的点,可以看做强连通分量的根),
开始不断从栈顶弹出元素,直到dfn=low的点也出了栈(即让强连通分量出栈)。

Tarjan算法详解点击此处

代码如下

#include<iostream>
#include<vector>
#include<stack>
#include<cmath>
using namespace std;
const int N = 10005;
int n,m,top=0,index=0,ans=0,dfn[N]={0},low[N]={0},stk[N]={0},inStk[N]={0};
vector<int> v[N];
void tarjan(int root){
	if(dfn[root]) return;
	dfn[root]=low[root]=++index;
	stk[++top]=root;
	inStk[root] = 1;
	for(int i = 0; i < v[root].size(); i++){
		int k = v[root][i];
		if(!dfn[k]){
			tarjan(k);//dfs过程 
			low[root]=min(low[root],low[k]);//回溯的时候更新一下low值 
		}else if(inStk[k]){//能指向时间戳更小的点 
			low[root]=min(low[root],low[k]);
		}
	}
	if(low[root]==dfn[root]){
		int sum = 0;
		while(1){
			int x = stk[top--];
			inStk[x] = 0;
			sum++; 
			if(x==root) break;
		} 
		ans += (sum*(sum-1))/2;
	}
}
int main()
{
	int a,b;
	scanf("%d%d", &n, &m);
	for(int i = 0; i < m; i++){
		scanf("%d%d", &a, &b);
		v[a].push_back(b); 
	}
	for(int i = 1; i <= n; i++){
		if(!dfn[i])
			tarjan(i);
	}
	printf("%d\n", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值