跨语言词向量笔记6. 从跨语言词向量到多语言词向量

本文介绍了从跨语言词向量扩展到多语言词向量的方法,包括基于映射的方法和使用人工混合语料与联合训练。通过多语言环境,可以解决词语歧义性问题,利用不同语言之间的差异作为正则项,提升词嵌入的质量。研究还探讨了如何使用句级别和文档级别信息来进一步增强多语词嵌入的效果。
摘要由CSDN通过智能技术生成

本文完全来自于Anders Søgaard等人的著作[Søgaard2019] Søgaard, A., Vulić, I., Ruder, S., & Faruqui M. (2019). Cross-Lingual Word Embeddings

在获得了双语词向量后,很自然地会考虑将其扩展到多语的环境下。训练多语词向量实际有很强的现实意义:一些工作指出对于词语歧义性问题,多语环境可以提供一种自然的、隐含的监督信号。一些语言对某些意思的定义是含蓄的,另一种语言则可能是外露的。因此使用多种语言做对齐可能可以更好地利用这种隐含的监督信号,达到消歧义以及产生更好的词嵌入的目的。即便是想学习词表之间的一一映射关系,词汇词意上分布的差异也可以扮演一个有效的正则项的角色

使用词级别信息的多语词嵌入

基于映射的方法

多语词嵌入学习里,最直接的仍然是基于映射的方法。这种方法需要一个中枢语言(通常是英语),若要学习 L L L个语言的词向量,则需要 L L L个单语空间和 L − 1 L-1 L1个种子词典,然后将 L − 1 L-1 L1个空间映射到相同的这个中枢语言空间中。记中枢语言为 l p l^p lp,则映射法的目标函数基本形式为
L 1 + L 2 + … + L L − 1 + L p + Ω l 1 → l p + Ω l 2 → l p + … + Ω l L − 1 → l p \mathcal{L}^1 + \mathcal{L}^2 + \ldots + \mathcal{L}^{L-1} + \mathcal{L}^p + \Omega^{l^1 \rightarrow l^p} + \Omega^{l^2 \rightarrow l^p} + \ldots + \Omega^{l^{L-1} \rightarrow l^p} L1+L2++LL1+Lp+Ωl1lp+Ωl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值