随笔——一些感情事

经历了一段痛苦的感情,一直分分合合,昨晚正式分手,不想回忆,不敢回忆,因为真真是乱糟糟的不知从何反思自己,也不知道从何把错误都推给对方哈哈哈,但又觉得应该有个仪式感,索性写一篇博客作为结束吧。 初恋,将近4年呐,一开始炒鸡开心,那时候觉得我何德何能得遇这样的真心,一定要好好珍惜,一开始不太会谈恋...

2019-01-30 17:14:04

阅读数 24

评论数 0

图像识别——AlexNet原理解析及实现

转载自:https://blog.csdn.net/u012679707/article/details/80793916         ...

2019-01-26 20:28:10

阅读数 51

评论数 0

知识图谱_关系抽取_文献笔记(二)

本文介绍一篇18年EMNLP的文章Neural Relation Extraction via Inner-Sentence Noise Reduction and Transfer Learning。对知识图谱关系抽取前世了解一下,再来看今天的文章哦。还需了解一下用神经网络做依存句法分析。 一...

2019-01-02 21:16:18

阅读数 448

评论数 0

依存句法分析—A Fast and Accurate Dependency Parser using Neural Networks

一、问题描述 这是一篇使用神经网络来做依存句法分析的经典文章,传统的依存句法分析特征向量稀疏,特征向量泛化能力差,特征计算消耗大,用神经网络做transition-based贪心模型可以缓解上述问题,准确率提高,速度变快。由于源代码是java写的,所以本人看了用tensorflow改写的代码,但...

2019-01-02 19:25:00

阅读数 65

评论数 0

语音识别MFCC系列(四)——MFCC特征参数提取

最好先看下下面三篇(其中系统的讲述了离散傅里叶变换,能量密度谱为什么是DFT系数的平方除以总点数,为什么512点的离散傅里叶变换只选前257个分量,离散余弦变换,为什么采样频率要大于真实信号最大频率的两倍,频谱混叠,频谱泄露,为什么要用窗函数等等),做知识储备,如果上述问题不懂,一定要去看哦,都可...

2018-12-03 23:44:24

阅读数 212

评论数 0

语音识别MFCC系列(三)——离散余弦变换DCT

都说DCT和离散傅里叶变换DFT其实是一样的,那咱们就从DFT推出DCT吧。 如果信号是实数,那么DFT的系数有实部,有虚部,是复共轭的,也就是说正频率的系数是负频率系数的共轭,原理参考前两篇博客: 连续信号的请看语音识别MFCC系列(一)——连续信号、傅里叶变换 离散信号的请看语音识别MF...

2018-12-03 22:14:46

阅读数 33

评论数 0

语音识别MFCC系列(二)——离散信号、离散傅里叶变换

看了很多傅里叶变换(连续信号和离散信号)的博客,都写的不是很清楚,有些地方可能有误,我在查阅了书籍和大量资料以后,争取能用前后标注一致的公式把相关内容(帕斯瓦尔公式,能量信号,功率信号,能量谱,功率谱等)讲清楚,说正确。最好先看连续信号再看离散信号哦 连续信号的请看语音识别MFCC系列(一)——...

2018-11-30 13:27:16

阅读数 42

评论数 0

语音识别MFCC系列(一)——连续信号、傅里叶变换

看了很多傅里叶变换(连续信号和离散信号)的博客,都写的不是很清楚,有些地方可能有误,我在查阅了书籍和大量资料以后,争取能用前后标注一致的公式把相关内容(帕斯瓦尔公式,能量信号,功率信号,能量密度谱,功率频谱等)讲清楚,说正确。最好先看连续信号再看离散信号哦 连续信号的请看语音识别MFCC系列(一...

2018-11-28 21:13:47

阅读数 87

评论数 0

bagging, boosting

本文将介绍Offline Bagging,Offline Boosting,adaboost,Online Bagging,Online Boosting,Offline Boosting应用于特征选择,Online Boosting应用于特征选择等算法。 参考文献 [1]...

2018-11-11 18:21:06

阅读数 66

评论数 0

文献阅读笔记—BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding

迁移学习在nlp领域的应用之pretrain language representation,四连载,建议按顺序看,看完对该方向一定会非常清楚的! (一)ELMO:Deep contextualized word representations (二)Universal Language Mo...

2018-11-07 13:13:52

阅读数 388

评论数 0

文献阅读笔记—Improving Language Understanding by Generative Pre-Training

迁移学习在nlp领域的应用之pretrain language representation,四连载,建议按顺序看,看完对该方向一定会非常清楚的! (一)ELMO:Deep contextualized word representations (二)Universal Language Mo...

2018-11-06 22:03:01

阅读数 655

评论数 1

文献阅读笔记—Universal Language Model Fine-tuning for Text Classification

迁移学习在nlp领域的应用之pretrain language representation,四连载,建议按顺序看,看完对该方向一定会非常清楚的! (一)ELMO:Deep contextualized word representations (二)Universal Language Mo...

2018-11-05 21:42:25

阅读数 459

评论数 0

文献阅读笔记—Deep contextualized word representations

迁移学习在nlp领域的应用之pretrain language representation,四连载,建议按顺序看,看完对该方向一定会非常清楚的! (一)ELMO:Deep contextualized word representations (二)Universal Language Mo...

2018-10-26 16:41:28

阅读数 583

评论数 0

文献阅读笔记—Multiway Attention Networks for Modeling Sentence Pairs

1. 问题描述 这是一篇计算两个句子间相似度的文章,用于句子p是否是句子q的另一种表达(paraphrase identification)、句子p是否可以从句子q中推断出(natural language inference)、句子p是否是句子q的答案(Answer Sentence Sele...

2018-10-25 23:18:06

阅读数 143

评论数 0

mac安装pytesseract遇到的问题集锦

电脑mac本地,楼主本来想用下面这段代码识别一个图片中的数字: import pytesseract from PIL import Image img = Image.open('/Users/liangmimi/Desktop/11.png') a = pytesseract.image_...

2018-10-22 10:06:51

阅读数 161

评论数 0

mac用终端进入pycharm的虚拟python环境

在pycharm中每新建一个项目,会新建一个python虚拟环境,如果想在这个虚拟环境中安装一些python库,有两种方法: 1. 在这个项目中新建一个requirements文件,里面写上你想要的库,然后pycharm会自动检测这些库有没有安装并提醒你安装。 2. 在项目的interpr...

2018-10-22 09:50:41

阅读数 549

评论数 0

深度学习最优化(四)—— 动量法/Nesterov/Adagrad/Adadelta/RMSprop/Adam/Nadam

1. SGD 现在的SGD一般都指小批量梯度下降,即每一次迭代计算mini-batch的梯度,然后对参数进行更新。                                               其中是模型参数,是模型目标函数,是目标函数的梯度,是学习率。 难点(缺点): ...

2018-10-16 20:53:55

阅读数 149

评论数 0

RNN与LSTM系列(一)——LSTM反向传播公式推导

转载自https://blog.csdn.net/wjc1182511338/article/details/79285503 0 LSTM相对于rnn的优势 The Problem of Long-Term Dependencies One of the appeals of RNNs i...

2018-10-08 16:10:21

阅读数 217

评论数 0

RNN与LSTM系列(二)——LSTM的参数个数

转载:https://www.cnblogs.com/wushaogui/p/9176617.html 目录: 1.LSTM简单介绍 2.简单假设样例 3.神经元分析 3.1忘记门层 3.2细胞状态 3.3输出层 3.4总结 4.测试 1.LSTM简单介绍   ...

2018-10-08 13:49:14

阅读数 1573

评论数 0

文献阅读—跨语言词向量—无监督

上一篇博客将了有监督的跨语言词向量训练,这篇博客将无监督的跨语言词向量《A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings》。 1. 初步构想 和分别表示两...

2018-09-15 22:37:16

阅读数 290

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭