Redis
redis使用场景
- 缓存
- 穿透、击穿、雪崩
- 双写一致、持久化
- 数据过期、淘汰策略
- 分布式锁
- setnx、redisson
- 计数器
- 保存token
- 消息队列
- 延迟队列
Redis的数据持久化策略有哪些?
RDB(Redis Database Backup file)redis数据快照
把内存中的所有数据都记录到磁盘中,当Redis实例故障重启后,从磁盘读取快照文件,恢复数据
怎么备份?
设置redis的conf配置文件来触发备份条件,900秒内,有1个key被修改,则执行bgsave
RDB执行原理
bgsave开始时会fork主进程得到子进程,子进程共享
主进程的内存数据。完成fork后读取内存数据并写入RDB文件。
linux进程是不能直接访问物理内存的,通过页表来映射虚拟地址与物理内存
AOF Append Only File (追加文件)
Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件 默认是关闭的,要在配置文件开启
AOF命令记录频率
AOF重写功能
AOF是记录命令的,相对RDB较大,AOF会记录对同一个key的多次写操作,但只有最后一次的操作才有意义
执行bgrewriteaof
命令,可以让AOF文件执行重写功能
配置文件配置重写阈值 超过上次文件百分比
超过固定体积大小
触发重写
RDB 和 AOF 对比
什么是缓存穿透,怎么解决?
缓存穿透:查询一个不存在的数据,MySql查询不到数据也不会写入缓存,就会导致每次请求都查询数据库
两种解决方案:
- 缓存空数据,查询返回的数据为空,仍把这个空结果进行缓存
- 优点:简单
- 缺点:消耗内存,可能会发生不一致的问题
- 布隆过滤器:(缓存预热时,先预热布隆过滤器)先查询布隆过滤器,过滤器中存在则查redis,不存在就返回
- 优点:占用内存少,没有多余key
- 缺点:实现复杂,存在误判
什么是布隆过滤器?
bitmap(位图):相当于是一个以(bit)位为单位的数组,数组中每个单元只能存储二进制数0或1
布隆过滤器依赖bitmap来检索一个元素是否存在一个集合中。
- 存储数据:id为1的数据,根据多个hash函数获取hash值,根据hash计算组对应位置改为1
- 查询数据: 使用相同hash函数获取hash值,判断对应位置是否都为1
误判率:数组越小误判率就越大,数组越大误判率就越小,数组越大内存消耗更多。
实现方案:
- Redisson
- Guava
什么是缓存击穿,怎么解决?
给某一个key设置了过期时间,当key过期的时候,恰好这个时间点对这个key有大量的并发请求过来,这些并发的请求可能会瞬间把DB压垮
DB查询到的数据不是应该存Redis嘛,为什么还会把Db击垮?
存储数据到Redis可能消耗时间较长,Redis还没有构建好索引,DB已经被击垮了
怎么办呢?
-
互斥锁(分布式锁)
查询缓存(未命中)->获取互斥锁(其他线程获取失败 休眠一会重试)->查询数据库重建缓存数据->写入缓存->释放锁
- 强一致
- 性能差
-
逻辑过期(有个逻辑过期时间字段)
查询缓存,逻辑时间过期->获取互斥锁(其他线程获取失败)->异步开启一个线程(DO: 1、查询数据库重建缓存数据 2、写入缓存重逻辑过期时间 3、释放锁)->返回过期数据(不需要等待上一步线程执行完)
- 高可用
- 性能优
什么是缓存雪崩,怎么解决?
缓存雪崩是指同一时间大量key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力
- 针对大量key同时失效,可以给不同的Key的TTL添加随机值(过期时间随机)
- 利用Redis集群提高服务的可用性(哨兵模式、集群模式)
- 给缓存业务添加降级限流策略(nginx或SpringCloudGateway)
降级可作为系统的保底策略,适用于穿透、击穿、雪崩
- 给业务添加多级缓存(Guava或Caffeine)
<<缓存三兄弟>>
穿透无中生有key,布隆过滤null隔离
缓存击穿过期key,锁与非期解难题
雪崩大量过期key,过期时间要随机
面试必考三兄弟,可用限流来保底
redis双写问题
双写一致性:当修改了数据库的数据也要同时更新缓存的数据,缓存和数据库的数据要保持一致
-
读操作:缓存命中,直接返回;缓存未命中查询数据库,写入缓存,设定超时时间
-
写操作:
延迟双删
- 先修改数据库还是先删除缓存呢
- 为什么要延迟呢?
引入问题
先删除缓存 再修改数据库
脏读问题(删除缓存后还没有来的及修改数据库被另一个线程读取到旧数据,缓存和数据库数据从而不一致)
先修改数据库,再删除缓存
脏读问题(查询缓存后未命中,查询数据库并保存到Redis,还没有存到redis缓存时,被修改数据库数据并且将redis缓存删除之后才保存之前的缓存数据)
为什么要删除两次缓存?
避免缓存中存在之前的旧数据,达到数据的一致性
为什么要延时删除呢?
因为一般情况下数据库都是读写分离,主从复制的,需要等待从库的数据的更新,极大地控制了脏数据的风险,但是因为延迟时间不好确定,还是有脏数据的风险的
双写一致的实现(Redis缓存的数据都是读多写少)
- 分布式锁
强一致性,性能差 redisson读写锁
- 共享锁:读锁ReadLock,加锁之后,其他线程可以共享读操作
- 排他锁:也叫独占锁writeLock,加锁之后,阻塞其他线程读写操作
- 读数据的时候使用共享锁,写数据的时候使用排他锁
- 异步通知
- 消息中间件保证数据最终一致性
MQ需要可靠
- 写入数据库
- 发布消息到队列
- 相关服务监听到信息
- 相关服务更新缓存 保证最后的数据一致性
- Canal监控数据库的binlog来保证数据一致性
基于mysql的主从同步实现
- 1、写入数据库
- 2、canal监听mysql的binlog
- 3、canal通知数据变更情况
- 4、相关服务更新缓存
- 消息中间件保证数据最终一致性
Redis分布式锁如何实现
结合业务场景进行回答
使用场景:集群下的定时任务、抢单、幂等性场景
Redis实现分布式锁主要利用Redis的setnx
命令。setnx是SET if not exists(如果不存在,则SET)的简写
获取锁
一条命令保证原子性
# 添加锁 ,NX是互斥、EX 是设置超时时间
SET lock value NX EX 10
释放锁
DEL key
- 续期来控制锁的有效时长
- 控制分布式锁的有效时长
- 合理
- while循环来获取锁
- 性能好
- 高并发
- 加锁、设置过期时间都是基于lua脚本完成
- 原子性
redisson实现的分布式锁-可重入
判断是否为同一个线程,如果是同一个线程则可重入
使用hash结构来存储线程信息和重入的次数
redisson实现的分布式锁-主从一致性
RedLock(红锁):不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁(n/2+1),避免在一个redis实例上加锁
- 红锁实现(redis AP思想)
- 不建议(实现复杂、性能差、运维繁琐)
- zookeeper(cp思想)
为什么要用分布式锁?
分布式锁最主要的服务之间可以共享锁,synchronized
只能在每个服务内部加锁,即java程序内部加锁,而分布式锁可以加锁在每个服务。
为什么要设置超时时间呢? 怎么合理控制Redis分布式锁的有效时长?
如果不设置超时时间,当一个服务获取锁成功,但是这个服务突然宕机了,那么这个锁就不会被释放,其他服务也无法拿到这个锁
Redis分布式锁如何合理的控制锁的有效时长
为什么要控制锁的有效时长呢?
超时时间设置的太短了如果业务还没有执行完就会影响数据,如果设置太长了影响性能。
- 判断锁的时长
- 续期
- redisson分布式锁中,提供了WatchDog来给持有锁的线程
续期
(默认每隔10秒续期一次)
- redisson分布式锁中,提供了WatchDog来给持有锁的线程
Redis的数据过期策略有哪些?
Redis对数据设置数据的有效时间,数据过期以后,就需要将数据从内存中删除掉。可以按照不同的规则进行删除,这种删除规则就被称之为数据的删除策略(数据过期策略)
-
惰性删除
设置该key过期时间后,不去管它,当需要该key时,再检查是否过期,如果过期,就删掉它,反之则返回该key
优点:对CPU友好,只会在使用该key时才会进行过期检查,对于很多用不到的key不用浪费时间进行过期检查
缺点:对内存不友好,如果一个key已经过期,但是一直不用,则该key会一直在内存中,内存永远不会释放
-
定期删除
每隔一段时间,就对一些key进行检查,删除里面过期的key(从一定数量的数据库中取出一定数量的随机key进行检查,并删除对应的key)
- SLOW模式(定时任务,默认执行频率10hz,每次不超过25ms,可以修改配置文件的hz选项来调整次数)
- FAST模式 执行频率不固定,但两次间隔不低于2ms,每次耗时不超过1ms
优点:通过限制删除操作执行的时长和频率来减少删除操作对CPU的影响。定期删除,有效的释放过期键占用的内存
缺点:难以确定删除操作执行的时长和频率
Redis的过期删除策略
:惰性删除
+定期删除
两种策略进行配合使用
Redis的数据淘汰策略有哪些?
当Redis中的内存不够用时,此时向Redis中添加新的Key,那么Redis就会按照某一种规则将内存中的数据删除掉,这种数据的删除规则被称之为内存的淘汰策略
- noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,
默认策略
- volatile-ttl: 对设置了TTL(过期时间)的key,比较key剩余的TTL值,TTL越小越先被淘汰
- allkeys-random: 对全体key,随机进行淘汰
- volatile-random:对设置了TTL的key,随机进行淘汰。
- allkeys-lru: 对全体key,基于LRU算法进行淘汰
LRU
(Least Recently Used)最近最少使用。用当前时间减去最后一次访问时间,这个值越大,淘汰优先级越高
- volatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰
- allkeys-lfu:对全体key,基于LFU算法进行淘汰
LFU
(Least Frequently Used)最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高
- volatile-lfu: 对设置了TTl的key,基于LFU算法进行淘汰
使用建议
- 优先使用allkeys-lru 策略。充分利用LRU算法的优势,把最近常访问的数据留在缓存中。如果业务有明显的
冷热数据区分
,建议使用 - 如果业务中数据访问频率差别不大,没有明显冷热数据区分,建议使用allkeys-random,随机选择淘汰
- 如果业务中有
置顶
的需求,可以使用volatile-lru策略,同时置顶数据不设置过期时间,这些数据就一直不被删除,会淘汰其他设置过期时间的数据。 - 如果业务中有短时高频访问的数据,可以使用allkeys-lfu或volatile-lfu策略。
频率
关于数据淘汰策略其他的面试问题
-
数据库有1000万数据,Redis中只能缓存20W数据,如何保证Redis中的数据都是热点数据
使用allkeys-lru(挑选最近最少使用的数据淘汰)淘汰策略,留下来的都是经常访问的热点数据
-
Redis的内存用完了会发生什么
看数据淘汰策略是什么,如果是默认的配置(noeviction),会直接报错
开发中用的较多的是allkeys-lru
其他面试题
- 集群
- 主从
- 哨兵
- 集群
- 事务
- Redis为什么快?
Redis集群有哪些方案,知道嘛?
- 主从复制
- 哨兵模式
- 分片集群
什么是Redis主从同步
主从复制
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建Redis集群,实现读写分离。
主从数据同步原理
全量同步
执行流程
- 从节点发送数据请求同步(replid,offset)
- 主节点根据replid判断是否为第一次请求,第一次则返回数据版本信息
- 主节点执行bgsave命令,生成RDB文件并发送到子节点
- 主节点在生成RDB时会记录期间的命令到缓冲区里面的repl_backlog文件
- 把生成之后的命令日志文件发送给从节点进行同步
思考两个问题:
-
是怎么判断是否为第一次同步呢?
子节点发送replid到主节点,如果主节点的replid与子节点的replid不一致,则视为第一次同步
-
是怎么判断子节点缺少多少信息要发送多少信息呢?
通过获取子节点的偏移量,子节点的偏移量到 主节点的偏移量的信息 就是要发送的信息。
主从增量同步
执行流程
- 判断是否是第一次同步
- 不是第一次同步则从日志文件拿出offset后的数据进行同步
你们使用Redis是单点还是集群?哪种集群?
redis哨兵(Sentinel)是什么
Redis 提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。
作用
- 监控
- 不断检查主节点和从节点是否按预期工作
- 自动故障恢复
- 如果主节点故障,Sentinel会将一个子节点提升为Master。当实例故障恢复后也会以新的master为主
- 通知
- 充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新消息推送给Redis的客户端
- 就是说主节点故障后,告诉客户端让它联系新的主节点
服务状态监控
sentinel基于心跳机制检测服务状态,每隔1秒向集群的每个实例发送ping命令
- 主观下线:如果某个sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线
- 客观下线:若超出指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
哨兵选主规则
- 首先判断主与从节点断开时间长短,如超过指定值就排除该从节点
- 然后判断从节点slave-priority值,越小优先级越高
- 如果slave-prority一样,判断slave节点的offset值,越大优先级越高
- 最后判断slave节点的运行id大小,越小优先级越高
Redis分片集群中数据是怎么存储和读取的?
分片集群结构
- 集群中有多个master,每个master保存不同数据
- 每个master都可以有多个slave节点
- master之间通过ping监测彼此健康状态
- 客户端请求可以访问集群任意节点,最终都会被转发到正确节点
数据读写
Redis 分片集群引入了哈希槽的概念,Redis 集群有 16384 个哈希槽,每个 key通过 CRC16 校验后对 16384 取模来决定放置哪个槽,集群的每个节点负责一部分 hash 槽。
redis集群脑裂
集群脑裂
是由于主节点和从节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到主节点,所以通过选举的方式提升了一个从节点为主,这样就存在了两个主节点,就像大脑分裂了一样,会导致客户端还在老的主节点那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将老的主节点降为从节点,这时再从新master同步数据,就会导致数据丢失
修改配置
min-replicas-towrite 1 表示最少的salve节点为1个
min-replicas-max-lag 5 表示数据复制和同步的延迟不能超过5s
怎么保证redis的高并发高可用
哨兵模式:实现主从集群的自动故障恢复(监控、自动故障恢复、通知)
你们用过Redis的事务吗?事务的命令有哪些?
Redis是单线程的,但是为什么还那么快?
- Redis是纯内存操作,执行速度非常快
- 采用单线程,避免不必要的上下文切换可竞争条件,多线程还要考虑线程安全问题
- 使用I/O多路复用模型,非阻塞IO
能解释下I/O多路复用模型吗?
Redis是纯内存操作,执行速度非常快,它的性能瓶颈是网络延迟而不是执行速度, I/O多路复用模型主要就是实现了高效的网络请求
用户空间和内核空间
Linux系统中一个进程使用的内存情况划分两部分:内核空间、用户空间
- 内核空间
- 可以执行特权命令(Ring0),调用一切系统资源
- 用户空间
- 只能执行受限的命令(Ring3),而且不能直接调用系统资源,必须通过内核提供的接口来访问
Linux系统为了提高IO效率,会在用户空间和内核空间都加入缓冲区:
- 写数据时,要把用户缓冲数据拷贝到内核缓冲区,然后写入设备
- 读数据时,要从设备读取数据到内核缓冲区,然后拷贝到用户缓冲区
阻塞IO
两个阶段都必须阻塞等待
阶段一
1 用户进程尝试读取数据(比如网卡数据)
2 此时数据尚未到达,内核需要等待数据
3 此时用户进程也处于阻塞状态
阶段二
- 数据到达并拷贝到内核缓冲区,代表已就绪
- 将内核数据拷贝到用户缓冲区
- 拷贝过程中,用户进程依然阻塞等待
- 拷贝完成,用户进程解除阻塞,处理数据
非阻塞IO
非阻塞IO的recvfrom操作会立即返回结果而不是阻塞用户进程。
阶段一
- 用户进程尝试读取数据(比如网卡数据)
- 此时数据尚未到达,内核需要等待数据
- 返回异常给用户进程
- 用户进程拿到error后,再次尝试读取
- 循环往复,直到数据就绪
阶段二
- 将内核数据拷贝到用户缓冲区
- 拷贝过程中,用户进程依然阻塞等待
- 拷贝完成,用户进程解除阻塞,处理数据
可以看到,非阻塞IO模型中,用户进程在第一个阶段是非阻塞,第二个阶段是阻塞状态。虽然是非阻塞,但性能并没有得到提高。而且忙等机制会导致CPU空转,CPU使用率暴增。
IO多路复用
是利用单个线程来同时监听多个Socket ,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。
不过监听Socket的方式、通知的方式又有多种实现,常见的有
- select
- poll
- epoll
差异
:
- select和poll只会通知用户进程有Socket就绪,但不确定具体是哪个Socket ,需要用户进程逐个遍历Socket来确认
- epoll则会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间
阶段一
- 用户进程调用select,指定要监听的Socket集合
- 内核监听对应的多个socket
- 任意一个或多个socket数据就绪则返回readable
- 此过程中用户进程阻塞
阶段二
- 用户进程找到就绪的socket
- 依次调用recvfrom读取数据
- 内核将数据拷贝到用户空间
- 用户进程处理数据
Redis网络模型
Redis通过IO多路复用来提高网络性能,并且支持各种不同的多路复用实现,并且将这些实现进行封装, 提供了统一的高性能事件库