热启动和冷启动

     在日常用机过程中,往往需要对计算机进行冷启动和热启动,通常的方法是通过按Reset 键实现冷启动,按<Ctrl>+<Alt>+<Del>实现热启动。它们的实   质都是转入BIOS的入口点,(即ROM的起始地址FFFF:0处),转向启动程序。
    该启动程序在执行过程中需检测复位标志字(位于BIOS数据区地址0040:0072)的值,若为1234,则启动时不检测内存,若非1234则先检测内存,再启动系统   。冷启动和热启动的不同之处在于热启动不检测内存。
   具体程序如下:
    冷启动:
    DEBUG RESET.COM
    -A 0100
JMP FFFF:0
INT 20

-RCX
0007
-W
-Q
热启动
   DEBUG BOOT.COM
   -A 0100
      MOV AX,0040
      MOV DS,AX
      MOV AX,1234
-RCX
0007
-W
-Q
热启动
   DEBUG BOOT.COM
   -A 0100
      MOV AX,0040
      MOV DS,AX
      MOV AX,1234
      MOV SI,0072
      MOV (SI),AX
      JMP FFFF:0
      INT 20

   -RCX
   0014
   -W
   -Q
### 深度学习中热启动冷启动的概念及区别 #### 热启动冷启动定义 提示词冷启动指的是模型首次接收到新或未充分训练的提示词时遇到的问题[^1]。此时,由于缺乏足够的先验知识或历史交互记录,模型可能难以提供高质量的回答。 相比之下,提示词热启动描述的是当模型已经有一定量的训练数据或上下文信息作为基础的情况下进行的操作。在这种状态下,模型可以利用已有的经验来更好地理解回应新的输入。 #### 关键差异点 - **初始状态**:冷启动发生在没有任何先前相关经验数据积累的状态;而热启动则是在已经有了一定程度的学习成果之后发生的。 - **性能表现**:对于从未见过的数据类型,在冷启动条件下,系统的预测准确性可能会较低,因为缺少针对性调整的机会。相反,在热启动场景下,得益于之前的经验教训以及参数微调过程,预期会获得更优的结果质量。 - **适应速度**:处于冷启动阶段时,系统需要花费更多时间去探索有效的解决方案路径并逐步优化内部机制;而在热启动模式里,则能更快地收敛到较好的解空间位置,从而加速整个迭代改进的过程。 ```python # 这是一个简单的模拟例子展示两种不同情况下的行为差异 def model_performance(is_cold_start): if is_cold_start: print("Model starts with minimal knowledge, learning from scratch.") else: print("Model leverages existing data and context for better initial performance.") model_performance(True) # 冷启动情形 model_performance(False) # 热启动情形 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值