线性规划-单纯形法

Linear Programming问题的数学模型:

使用简单的符号变换,引入松弛变量,将约束变为等式形式,LP问题的标准形式可写作:
max ⁡   z = ∑ j = 1 n c j x j  s.t.  { ∑ j = 1 n a i j x j = b i , ( i = 1 , 2 , … , m ) x j ≥ 0 , ( j = 1 , 2 , … , n ) \begin{aligned} \max \ & z=\sum_{j=1}^n c_j x_j \\ \text { s.t. } & \left\{\begin{array}{l} \sum_{j=1}^n a_{i j} x_j=b_i, \quad(i=1,2, \ldots, m) \\ x_j \geq 0, \quad(j=1,2, \ldots, n) \end{array}\right. \end{aligned} max  s.t. z=j=1ncjxj{j=1naijxj=bi,(i=1,2,,m)xj0,(j=1,2,,n)

max ⁡   z = c T x  s.t.  { A x = b x ≥ 0 \begin{aligned} \max \ & z=\mathbf{c}^T \mathbf{x} \\ \text { s.t. } & \left\{\begin{array}{l} \mathbf{A x}=\mathbf{b} \\ \mathbf{x} \geq 0 \end{array}\right. \end{aligned} max  s.t. z=cTx{Ax=bx0

LP问题相应术语:

  • 超平面 (hyperplane):
    约束方程任一等式约東: a i x = b i \mathbf{a}_i \mathbf{x}=b_i aix=bi, 称 H i = { x ∣ a i x = b i } \mathscr{H}_i=\left\{\mathbf{x} \mid \mathbf{a}_i \mathbf{x}=b_i\right\} Hi={xaix=bi} 为超平面 (hyperplane), 其中 a \mathbf{a} a为决定平面的法线.
    超平面 H i \mathscr{H}_i Hi 将空间 R n \mathbb{R}^n Rn 分成三个部分: ( a i x = b i ) \left(\mathbf{a}_i \mathbf{x}=b_i\right) (aix=bi)
    H i U  (开):  a i x > b i  上半空间 (Upper halfspace)  H i : a i x = b i  超平面 (hyperplane)  H i L (  开):  a i x < b i  下半空间 (Lower halfspace)  \begin{array}{rll} \mathscr{H}_i^U \text { (开): } & \mathbf{a}_i \mathbf{x}>b_i & \text { 上半空间 (Upper halfspace) } \\ \mathscr{H}_i: & \mathbf{a}_i \mathbf{x}=b_i & \text { 超平面 (hyperplane) } \\ \mathscr{H}_i^L(\text { 开): } & \mathbf{a}_i \mathbf{x}<b_i & \text { 下半空间 (Lower halfspace) } \end{array} HiU (): Hi:HiL( ) aix>biaix=biaix<bi 上半空间 (Upper halfspace)  超平面 (hyperplane)  下半空间 (Lower halfspace) 

  • LP问题解的可能情况:
    唯一解;无穷多解;无界解;无解

  • LP问题一些解的概念:
    可行解:标准形式的线性规划问题中, 凡满足所有约束条件的解 x \mathbf{x} x 称为问题的可行解,将这些可行解构成的集合称为可行解集或可行域.
    :约束方程的矩阵形式中, 等式约束所对应的系数矩阵 A \mathbf{A} A 中线性独立的列向量称为基.
    [ 1 0 1 0 1 1 0 0 0 ] [ x 1 x 2 x 3 ] = [ b 1 b 2 b 3 ] \left[\begin{array}{lll} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right]\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]=\left[\begin{array}{l} b_1 \\ b_2 \\ b_3 \end{array}\right] 100010110 x1x2x3 = b1b2b3
    此时前两列可以被视作基;
    基变量:约束方程的矩阵形式中,系数矩阵的列向量与变量一一对应. 当取定基以后, 与基对应的决策变量称为基变量, 其它的决策变量称为非基变量.
    对上式而言, x 1 x_1 x1 x 2 x_2 x2为基变量, x 3 x_3 x3为非基变量;
    基解:令非基变量全部取零,由等式约束解出的基变量的唯一解, 称为基解.
    基可行解:满足非负约束的基解称为基可行解.
    可行基:对应基可行解的基称为可行基.
    上述概念的包含关系如下:
    在这里插入图片描述

  • 上述概念In Depth:
    设矩阵 A \boldsymbol{A} A 的秩为 m m m, 又假设 A = [ B , N ] \boldsymbol{A}=[\boldsymbol{B}, \boldsymbol{N}] A=[B,N], 其中 B \boldsymbol{B} B m m m 阶可逆矩阵. 如果 A \boldsymbol{A} A 的前 m m m 列是线性相关的, 可以通过列调换, 使前 m m m 列成为线性无关的, 因此关于 B \boldsymbol{B} B 可逆的假设不失一般性. 同时记作
    x = [ x B x N ] x=\left[\begin{array}{l} x_B \\ x_N \end{array}\right] x=[xBxN]
    故等式约束可进一步写为:
    [ B , N ] [ x B x N ] = b , B x B + N x N = b , x B = B − 1 b − B − 1 N x N . \begin{aligned} & [\boldsymbol{B}, \boldsymbol{N}]\left[\begin{array}{l} x_B \\ x_N \end{array}\right]=b, \\ &\boldsymbol{ B} x_B+\boldsymbol{N} x_N=b , \\ &\boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} {b}-\boldsymbol{B}^{-1} \boldsymbol{N} {x}_{N}. \end{aligned} [B,N][xBxN]=b,BxB+NxN=b,xB=B1bB1NxN.
    进一步地,令 x N = 0 x_N = \bf{0} xN=0,得到的
    x = [ x B x N ] = [ B − 1 b 0 ] \boldsymbol{x}=\left[\begin{array}{l} x_B \\ x_N \end{array}\right]=\left[\begin{array}{c} B^{-1} b \\ 0 \end{array}\right] x=[xBxN]=[B1b0]
    即称为基解, B \boldsymbol{B} B 称为基矩阵,简称为基. x B x_B xB 的各分量称为基变量( x B x_B xB可逆),基变量的全体 x B 1 , x B 2 , ⋯   , x B m x_{B_1}, x_{B_2}, \cdots, x_{B_m} xB1,xB2,,xBm 称为一组基。 x N x_{N} xN 的各分量称为非基变量.
    更进一步地,若 B − 1 b ⩾ 0 \boldsymbol{B}^{-1} b \geqslant 0 B1b0,则为基可行解, B \boldsymbol{B} B 为可行基矩阵, x B 1 , x B 2 , ⋯   , x B m x_{B_1}, x_{B_2}, \cdots, x_{B_m} xB1,xB2,,xBm 为一组可行基。

  • 一般地, 当 A \boldsymbol{A} A m × n m \times n m×n 矩阵, A \boldsymbol{A} A 的秩为 m m m 时, 基本可行解的个数不会超过
    ( n m ) = n ! m ! ( n − m ) ! . \binom{n}{m}=\frac{n!}{m!(n-m)!} . (mn)=m!(nm)!n!.

LP问题的性质:

极点: x ∈ D \mathbf{x} \in \mathscr{D} xD x = [ x B T , x N T ] T \mathbf{x}=\left[\mathbf{x}_B^T, \mathbf{x}_N^T\right]^T x=[xBT,xNT]T,其中 x B \mathbf{x}_B xB 为基可行解, x N = 0 \mathbf{x}_N=\mathbf{0} xN=0

  • 定理:令 K = { x ∣ A x = b , x ⩾ 0 } , A K=\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geqslant 0\}, \boldsymbol{A} K={xAx=b,x0},A m × n m \times n m×n 矩阵, A \boldsymbol{A} A 的秩为 m m m, 则 K K K 的极点集与 A x = b , x ⩾ 0 A x=b, x \geqslant 0 Ax=b,x0 的基本可行解集等价.

单纯形法理论基础:

  • 线性规划问题的可行域是凸集.
  • 线性规划问题的基可行解是可行域 (凸集) 的顶点.
  • 线性规划问题若存在最优解, 则一定存在一个基可行解是最优解.
  • 故总体思路为:通过迭代求解:从初始的某个基可行解开始,依次寻找更优(使目标函数值增加)的基可行解, 直至最优.

单纯形法:

因为线性规划问题若存在最优解, 则一定存在一个基可行解是最优解。根据前述基变量/非基变量的想法,将原问题进一步写为:
c = [ c B c N ] , x = [ x B x N ] , A = [ A B A N ] \mathbf{c}=\left[\begin{array}{c} \mathbf{c}_B \\ \mathbf{c}_N \end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c} \mathbf{x}_B \\ \mathbf{x}_N \end{array}\right], \quad \mathbf{A}=\left[\begin{array}{ll} \mathbf{A}_B & \mathbf{A}_N \end{array}\right] c=[cBcN],x=[xBxN],A=[ABAN]
max ⁡   z = c T x = c B T x B + c N T x N  s.t.  { A B x B + A N x N = b x B ≥ 0 , x N ≥ 0 \begin{aligned} \max \ & z=\mathbf{c}^T \mathbf{x}=\mathbf{c}_B^T \mathbf{x}_B+\mathbf{c}_N^T \mathbf{x}_N \\ \text { s.t. } & \left\{\begin{array}{l} \mathbf{A}_B \mathbf{x}_B+\mathbf{A}_N \mathbf{x}_N=\mathbf{b} \\ \mathbf{x}_B \geq \mathbf{0}, \quad \mathbf{x}_N \geq \mathbf{0} \end{array}\right. \end{aligned} max  s.t. z=cTx=cBTxB+cNTxN{ABxB+ANxN=bxB0,xN0
此处仍假设 A \mathbf{A} A的秩为 m m m

寻找初始基可行解:

若系数矩阵 A \mathbf{A} A 中存在 m m m 个列向量, 恰好构成单位矩阵, 即存在 p i 1 , p i 2 , … , p i m \mathbf{p}_{i_1}, \mathbf{p}_{i_2}, \ldots, \mathbf{p}_{i_m} pi1,pi2,,pim 构成的矩阵为:
[ p i 1 p i 2 ⋯ p i m ] = [ 1 0 ⋯ 0 0 1 ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 1 ] \left[\begin{array}{llll} \mathbf{p}_{i_1} & \mathbf{p}_{i_2} & \cdots & \mathbf{p}_{i_m} \end{array}\right]=\left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{array}\right] [pi1pi2pim]= 100010001

将这些向量作为基向量, 相应的决策变量 x i 1 , x i 2 , … , x i m x_{i_1}, x_{i_2}, \ldots, x_{i_m} xi1,xi2,,xim 为基变量, 其它为非基变量, 则 x B = 0 , x N = 0 \mathbf{x}_B=\mathbf{0}, \mathbf{x}_N=\mathbf{0} xB=0,xN=0 就是一个基可行解.

进一步地,两阶段法与大M法提供了求初始基本可行解方法:

两阶段法

当矩阵 A \mathbf{A} A不包含 m m m阶单位矩阵,为使约束方程的系数矩阵中含有 m m m阶单位矩阵,把每个方程增加一个非负变量,令 A x + x a = b , x ⩾ 0 , x a ⩾ 0 , \begin{aligned} & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{x}_a=\boldsymbol{b}, \\ & \boldsymbol{x} \geqslant \mathbf{0}, \quad \boldsymbol{x}_a \geqslant \mathbf{0}, \end{aligned} Ax+xa=b,x0,xa0,
[ A , I m ] [ x x a ] = b , x ⩾ 0 , x a ⩾ 0. \begin{aligned} & \left[\boldsymbol{A}, \mathbf{I}_m\right]\left[\begin{array}{l} \boldsymbol{x} \\ \boldsymbol{x}_a \end{array}\right]=\boldsymbol{b}, \\ & \boldsymbol{x} \geqslant \mathbf{0}, \quad \boldsymbol{x}_a \geqslant \mathbf{0} . \end{aligned} [A,Im][xxa]=b,x0,xa0.
[ A , I m ] ∈ R m ∗ ( m + n ) \left[\boldsymbol{A}, \mathbf{I}_m\right]\in\mathcal{R}^{m*(m+n)} [A,Im]Rm(m+n).
显然, [ x x a ] = [ 0 b ] \left[\begin{array}{l} \boldsymbol{x} \\ x_a \end{array}\right]=\left[\begin{array}{l} 0 \\ b \end{array}\right] [xxa]=[0b]是基本可行解。
但要注意此时原约束 A x = b Ax=b Ax=b已不满足, 思路为从上面的基本可行解出发,能够求出一个使 x a = 0 \boldsymbol{x}_a=0 xa=0 的基本可行解, 那么就可得到原问题的一个基本可行解:这个问题可以被表述为(第一阶段问题): min ⁡ e T x a  s. t.  A x + x a = b , x ⩾ 0 , x a ⩾ 0. \begin{array}{ll} \min & \boldsymbol{e}^{\mathrm{T}} \boldsymbol{x}_a \\ \text { s. t. } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{x}_a=\boldsymbol{b}, \\ & \boldsymbol{x} \geqslant \mathbf{0}, \quad \boldsymbol{x}_a \geqslant \mathbf{0} . \end{array} min s. t. eTxaAx+xa=b,x0,xa0. 其中 e = ( 1 , 1 , ⋯   , 1 ) T e=(1,1, \cdots, 1)^{\mathrm{T}} e=(1,1,,1)T,由于 x = 0 , x a = b \boldsymbol{x}=\mathbf{0}, \boldsymbol{x}_{\boldsymbol{a}}=\boldsymbol{b} x=0,xa=b 是上述问题一个基本可行解, 目标函数值在可行域上有下界,则其必存在最优基本可行解. 所取得最优基本可行解 ( x ‾ T , x ‾ a T ) T \left(\overline{\boldsymbol{x}}^{\mathrm{T}}, \overline{\boldsymbol{x}}_a^{\mathrm{T}}\right)^{\mathrm{T}} (xT,xaT)T存在如下情形:
(1) x ‾ a ≠ 0 \overline{\boldsymbol{x}}_{\boldsymbol{a}} \neq \mathbf{0} xa=0. 这时原问题无可行解. 因为如果其存在可行解 x ^ \hat{\boldsymbol{x}} x^, 则
[ x x a ] = [ x ^ 0 ] \left[\begin{array}{l} \boldsymbol{x} \\ x_a \end{array}\right]=\left[\begin{array}{l} \hat{x} \\ 0 \end{array}\right] [xxa]=[x^0]是线性规划 (3.2.4) 的可行解. 在此点的目标函数值 f = 0 ⋅ x ^ + e T ⋅ 0 = 0 < e ⊤ x ‾ a , f=\mathbf{0} \cdot \hat{\boldsymbol{x}}+\boldsymbol{e}^{\mathrm{T}} \cdot \mathbf{0}=0<\boldsymbol{e}^{\top} \overline{\boldsymbol{x}}_a, f=0x^+eT0=0<exa, e T x ˉ a \boldsymbol{e}^{\mathrm{T}} \bar{x}_a eTxˉa 是目标函数的最优值,矛盾.
(2) x ‾ a = 0 \overline{\boldsymbol{x}}_a=\mathbf{0} xa=0 x a \boldsymbol{x}_a xa 的分量都是非基变量. 这时, m m m 个基变量都是原来的变量, 则 [ x x a ] = [ x ˉ 0 ] \left[\begin{array}{l} x \\ x_a \end{array}\right]=\left[\begin{array}{l} \bar{x} \\ 0 \end{array}\right] [xxa]=[xˉ0]
是第一阶段的基本可行解,因此 x = x ‾ \boldsymbol{x}=\overline{\boldsymbol{x}} x=x 是原问题一个基本可行解.
(3) x ˉ a = 0 \bar{x}_a=0 xˉa=0 x a \boldsymbol{x}_{a} xa 的某些分量是基变量. 这时, 可用主元消去法,把原来变量中的某些非基变量引进基,替换出基变量中的人工变量,再开始两阶段法的第二阶段. 应指出, 为替换出人工变量而采用的主元消去,在主元的选择上,并不要求遵守单纯形法确定离进基变量的规则,这个问题在后面的例题中还要说明.

两阶段法的第二阶段, 就是从得到的基本可行解出发, 用单纯形方法求原问题的最优解.

大M法

在约束中增加人工变量 x a x_a xa, 同时修改目标函数, 加上罚项 − M e T x a -M e^{\mathrm{T}} x_a MeTxa, 其中 M M M 是很大的正数, 这样, 在极小化目标函数的过程中, 由于大 M M M 的存在, 将迫使人工变量离基.

寻找改进的基可行解:

当前基可行解为: x B = A B − 1 b , x N = 0 {\mathbf{x}}_B=\mathbf{A}_B^{-1} \mathbf{b}, {\mathbf{x}}_N=\mathbf{0} xB=AB1b,xN=0
相应的目标函数值:
z ˉ = c T x = c B T x B + c N T x N = c B T A B − 1 b \bar{z}=\mathbf{c}^T {\mathbf{x}}=\mathbf{c}_B^T {\mathbf{x}}_B+\mathbf{c}_N^T {\mathbf{x}}_N=\mathbf{c}_B^T \mathbf{A}_B^{-1} \mathbf{b} zˉ=cTx=cBTxB+cNTxN=cBTAB1b
同时 A B x B + A N x N = b x B = A B − 1 [ b − A N x N ] \begin{aligned} &A_B x_B+A_N x_N =b \\ & x_B =A_B^{-1}\left[b-A_N x_N\right] \end{aligned} ABxB+ANxN=bxB=AB1[bANxN]为了使当前值进一步变大(max z),可以通过扰动当前的基可行解, 任取 j ∈ N j \in \mathscr{N} jN, 让非基变量 x j x_j xj 从 0 变成大于零, 则原基变量的解变化为 x B ′ \mathbf{x}_B^{\prime} xB, 扰动后还必须是可行解, 即: z ′ = c B ⊤ x B + c N ⊤ x N = c B ⊤ A B − 1 [ b − A N x N ] + c N ⊤ x N = c B ⊤ A B − 1 b ⏟ z ˉ + [ c N ⊤ − c B ⊤ A B − 1 A N ] x N = z ˉ + ∑ j [ c j − c B ⊤ A B − 1 p j ] x j \begin{aligned} z^{\prime} & =c_B^{\top} x_B+c_N^{\top} x_N \\ & =c_B^{\top} A_B^{-1}\left[b-A_N x_N\right]+c_N^{\top} x_N \\ & =\underbrace{c_B^{\top} A_B^{-1} b}_{\bar{z}}+\left[c_N^{\top}-c_B^{\top} A_B^{-1} A_N\right] x_N \\ & =\bar{z}+\sum_j\left[c_j-c_B^{\top} A_B^{-1} {p}_j\right] x_j \end{aligned} z=cBxB+cNxN=cBAB1[bANxN]+cNxN=zˉ cBAB1b+[cNcBAB1AN]xN=zˉ+j[cjcBAB1pj]xj即当每个 x j x_j xj取值相同时, c j − c B ⊤ A B − 1 p j c_j-c_B^{\top} A_B^{-1} {p}_j cjcBAB1pj越大,目标函数值增加越多,进一步假定 c k − c B ⊤ A B − 1 p k = max ⁡ j { c j − c B ⊤ A B − 1 p j } > 0 c_k-c_B^{\top} A_B^{-1} {p}_k = \max_j \{ c_j-c_B^{\top} A_B^{-1} {p}_j \} > 0 ckcBAB1pk=jmax{cjcBAB1pj}>0,此时等式约束 A B x B + A N x N = b   ( x N = 0 ) A_B x_B+A_N x_N =b \ (x_N = 0) ABxB+ANxN=b (xN=0)变为: A B x B + p k x k = b x B = A B − 1 b − A B − 1 p k x k A_B x_B + p_k x_k = b \\ x_B = A_B^{-1}b - A_B^{-1}p_k x_k ABxB+pkxk=bxB=AB1bAB1pkxk c j − c B ⊤ A B − 1 p j c_j-c_B^{\top} A_B^{-1} {p}_j cjcBAB1pj为检验数.

b ‾ = A B − 1 b , y k = A B − 1 p k \overline{\boldsymbol{b}}=\boldsymbol{A}_B^{-1} \boldsymbol{b}, \boldsymbol{y}_k=\boldsymbol{A}_B^{-1} \boldsymbol{p}_k b=AB1b,yk=AB1pk x B = b ‾ − y k x k x_B = \overline{\boldsymbol{b}}-\boldsymbol{y}_kx_k xB=bykxk,此时 x B x_B xB x N x_N xN的形式为:
x B = [ x B 1 x B 2 ⋮ x B m ] = [ b ˉ 1 b ˉ 2 ⋮ b ˉ m ] − [ y 1 k y 2 k ⋮ y m k ] x k \boldsymbol{x}_{\boldsymbol{B}}=\left[\begin{array}{c}x_{B_1} \\ x_{B_2} \\ \vdots \\ x_{B_m}\end{array}\right]=\left[\begin{array}{c}\bar{b}_1 \\ \bar{b}_2 \\ \vdots \\ \bar{b}_m\end{array}\right]-\left[\begin{array}{c}y_{1 k} \\ y_{2 k} \\ \vdots \\ y_{m k}\end{array}\right] x_k xB= xB1xB2xBm = bˉ1bˉ2bˉm y1ky2kymk xk x N = ( 0 , ⋯   , 0 , x k , 0 , ⋯   , 0 ) T \boldsymbol{x}_N=\left(0, \cdots, 0, x_k, 0, \cdots, 0\right)^{\mathrm{T}} xN=(0,,0,xk,0,,0)T z ′ = z ˉ + [ c k − c B ⊤ A B − 1 p k ] x k z^{\prime} =\bar{z}+\left[c_k-c_B^{\top} A_B^{-1} {p}_k\right] x_k z=zˉ+[ckcBAB1pk]xk
随后,需要确定 x k x_k xk的取值. 因为需保证 x k x_k xk取任意非负值时, x B = b ‾ − y k x k = A B − 1 b − A B − 1 p k x k ≥ 0 x_B = \overline{\boldsymbol{b}}-\boldsymbol{y}_kx_k=\boldsymbol{A}_B^{-1} \boldsymbol{b}-\boldsymbol{A}_B^{-1} \boldsymbol{p}_kx_k\geq0 xB=bykxk=AB1bAB1pkxk0,即每个元素都大于0,又因为
x B = [ b ˉ 1 − y 1 k x k b ˉ 2 − y 2 k x k ⋮ b ˉ m − y m k x k ] \mathbf{x}_{\mathbf{B}}=\left[\begin{array}{c}\bar{b}_1-y_{1 k} x_k \\ \bar{b}_2-y_{2 k} x_k \\ \vdots \\ \bar{b}_m-y_{m k} x_k\end{array}\right] xB= bˉ1y1kxkbˉ2y2kxkbˉmymkxk

于是得到: x k = min ⁡ { b ˉ i y i k ∣   y i k > 0 } = b ˉ r y r k , x_k=\operatorname{min}\left\{\left.\frac{\bar{b}_i}{y_{i k}} \right\rvert\, y_{i k}>0\right\}=\frac{\bar{b}_r}{y_{r k}}, xk=min{yikbˉi yik>0}=yrkbˉr,

  • 20
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

idkmn_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值