线性规划-内点法初探

参考:最优化理论与算法(第2版)(陈宝林)

书中首先介绍了将一般线性规划问题转化为Karmarkar标准问题求解,为简化计算,Karmarkar等人又给出了内点法以求解线性规划问题,此部分在书中为*号引申内容,介绍较为简略,此处也是对书中内容做简要的补充。

考虑如下线性规划问题
max ⁡ c T x  s. t.  A x ⩽ b \begin{array}{ll} \max & \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\ \text { s. t. } & \boldsymbol{A} \boldsymbol{x} \leqslant \boldsymbol{b} \end{array} max s. t. cTxAxb
其中: c , x ∈ R n \boldsymbol{c}, x \in \mathbb{R}^n c,xRn A  是  m × n 矩阵,  m ⩾ n .  \boldsymbol{A} \text { 是 } m \times n \text {矩阵, } m \geqslant n \text {. } A  m×n矩阵mn
算法的基本思想,是从内点 x ( 0 ) \boldsymbol{x}^{(0)} x(0) 出发,沿可行方向求出使目标函数值上升的后继点,再从得到的内点出发, 沿另一个可行方向求使目标函数值上升的内点。

将问题进行松弛:
max ⁡ c T x  s. t.  A x + v = b , v ⩾ 0. \begin{array}{ll} \max & \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\ \text { s. t. } & \boldsymbol{A x}+\boldsymbol{v}=\boldsymbol{b}, \\ & \boldsymbol{v} \geqslant \mathbf{0} . \end{array} max s. t. cTxAx+v=b,v0.
对于第k轮迭代,即有
v ( k ) = b − A x ( k ) \boldsymbol{v}^{(k)}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}^{(k)} v(k)=bAx(k)

  • 随后进行Affine Scaling,这是因为:当 x k \boldsymbol{x}^k xk 是非常接近边界又不是最优解时, 步长将被迫选得非常小, 到最优解的收敛将非常慢
  • 故:若当前解 x k \boldsymbol{x}^k xk 不是很靠近 “中心”, 需要将坐标重新拉伸 (re-scale), (仿射) 变换到靠近 “中心”的位置
  • 如何定义一个可行域的中心: 在这里插入图片描述
    x k = e \mathbf{x}^k=\mathbf{e} xk=e, 则
    (1) x k \mathbf{x}^k xk 距离边界 1 个单位.
    (2) 因此只要步长 α k < 1 \alpha^k<1 αk<1, 则可确保 x k + 1 > 0 \boldsymbol{x}^{k+1}>\mathbf{0} xk+1>0.

故可以定义对角矩阵: D k = diag ⁡ ( 1 v 1 ( k ) , ⋯   , 1 v m ( k ) ) . \boldsymbol{D}_k=\operatorname{diag}\left(\frac{1}{v_1^{(k)}}, \cdots, \frac{1}{v_m^{(k)}}\right) . Dk=diag(v1(k)1,,vm(k)1).,利用其进行Affine Scaling: w = D k v \boldsymbol{w}=\boldsymbol{D}_k \boldsymbol{v} w=Dkv,原问题可进一步被写为:
max ⁡ c ⊤ x  s. t.  A x + D k − 1 w = b , w ⩾ 0. \begin{array}{ll} \max & \boldsymbol{c}^{\top} \boldsymbol{x} \\ \text { s. t. } & \boldsymbol{A x}+\boldsymbol{D}_k^{-1} \boldsymbol{w}=\boldsymbol{b}, \\ & \boldsymbol{w} \geqslant \mathbf{0} . \end{array} max s. t. cxAx+Dk1w=b,w0.

在变换后的空间中,定义搜索方向为:
d = [ d x d w ] ∈ R m + n d=\left[\begin{array}{l} d_x \\ d_w \end{array}\right] \in \mathbb{R}^{m+n} d=[dxdw]Rm+n
代入可得:
A ( x + d x ) + D k − 1 ( w + d w ) = b A x + D k − 1 w ⏟ b + A d x + D k − 1 d w = b D k A d x + d w = 0 \begin{aligned} & A(x+d_x)+D_k^{-1}\left(w+d_w\right)=b \\ & \underbrace{A x+D_k^{-1} w}_b+A d_x+D_k^{-1} d_w=b \\ & D_k A d_x+d_w=0 \end{aligned} A(x+dx)+Dk1(w+dw)=bb Ax+Dk1w+Adx+Dk1dw=bDkAdx+dw=0
随后,为了寻找一个“好方向”,
对于满足 D k A d x + d w = 0 D_k A d_x+d_w=0 DkAdx+dw=0的任一解,有 A T D k ( D k A d x + d w ) = 0 A^{\mathrm{T}} D_k\left(D_k A d_x+d_w\right)=0 ATDk(DkAdx+dw)=0 (零空间投影)
可以得到:
d x = − ( A ⊤ D k 2 A ) − 1 A ⊤ D k d w . d_x=-\left(A^{\top} D_k^2 A\right)^{-1} A^{\top} D_k d_w . dx=(ADk2A)1ADkdw.
为了使 c T ( x + d x ) c^T(x+d_x) cT(x+dx)最大,将上式代入 c T d x c^T d_x cTdx得到:
c T d x = c T [ − ( A T D k 2 A ) − 1 A T D k d w ] = − [ D k A ( A T D k 2 A ) − 1 c ] T d w . \boldsymbol{c}^{\mathrm{T}} \boldsymbol{d}_x=\boldsymbol{c}^{\mathrm{T}}\left[-\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{D}_k^2 \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{D}_k \boldsymbol{d}_w\right]=-\left[\boldsymbol{D}_k \boldsymbol{A}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{D}_k^2 \boldsymbol{A}\right)^{-1} \boldsymbol{c}\right]^{\mathrm{T}} \boldsymbol{d}_w . cTdx=cT[(ATDk2A)1ATDkdw]=[DkA(ATDk2A)1c]Tdw.
为了使上式最大,需进一步确定 d w d_w dw取值,即选择同方向:
d w = − D k A ( A T D k 2 A ) − 1 c . \boldsymbol{d}_{\mathrm{w}}=-\boldsymbol{D}_k \boldsymbol{A}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{D}_k^2 \mathbf{A}\right)^{-1} \boldsymbol{c} . dw=DkA(ATDk2A)1c.
又由于: D k A d x + d w = 0 D_k A d_x+d_w=0 DkAdx+dw=0 可知
− D k A d x = d w = − D k A ( A T D k 2 A ) − 1 c -D_k A d_x = d_w = -D_k \boldsymbol{A}\left(A^{\mathrm{T}} D_k^2 A\right)^{-1} c DkAdx=dw=DkA(ATDk2A)1c
可得到 d x = ( A T D k 2 A ) − 1 c d_x = \left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{D}_k^2 \boldsymbol{A}\right)^{-1} \boldsymbol{c} dx=(ATDk2A)1c
随后,将得到的 d w d_w dw逆仿射:
d v = D k − 1 d w = − A ( A T D k 2 A ) − 1 c = − A d x d_v=D_k^{-1} d_w=-A\left(A^{\mathrm{T}} D_k^2 A\right)^{-1} c=-A d_x dv=Dk1dw=A(ATDk2A)1c=Adx
故迭代更新表示为:
x ( k + 1 ) = x ( k ) + λ d x \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\lambda \boldsymbol{d}_{\boldsymbol{x}} x(k+1)=x(k)+λdx
为保证更新序列始终为内点:
A ( x ( k ) + λ d x ) < b , λ A d x < b − A x ( k ) − λ d v < v ( k ) \begin{aligned} & \boldsymbol{A}\left(\boldsymbol{x}^{(k)}+\lambda \boldsymbol{d}_x\right)<\boldsymbol{b}, \\ & \lambda \boldsymbol{A} \boldsymbol{d}_x<\boldsymbol{b}-\boldsymbol{A } \boldsymbol{x}^{(k)} \\ & -\lambda \boldsymbol{d}_v<\boldsymbol{v}^{(k)} \end{aligned} A(x(k)+λdx)<b,λAdx<bAx(k)λdv<v(k)
令:
α = min ⁡ { v i ( k ) − ( d v ) i ∣   ( d v ) i < 0 , i ∈ { 1 , ⋯   , m } } , \alpha=\min \left\{\left.\frac{v_i^{(k)}}{-\left(d_v\right)_i} \right\rvert\,\left(d_v\right)_i<0, i \in\{1, \cdots, m\}\right\}, α=min{(dv)ivi(k) (dv)i<0,i{1,,m}},
λ = γ α , γ ∈ ( 0 , 1 ) \lambda=\gamma\alpha ,\gamma \in(0,1) λ=γαγ(0,1)
这样即可从 x ( k ) x^{(k)} x(k)出发沿方向 d x d_x dx求得使 c T x c^T x cTx上升的点

  • 14
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

idkmn_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值