刘汝佳0-1背包的一些笔记

用d(i,j)表示当前在第i层,背包剩余容量为j时接下来的最大重量和
一共有n个物品,i不代表已经选取的物品数量,而是遍历过的物品数量
d ( i , j ) d(i,j) d(i,j)代表剩余背包重量为j时,正在对物品i进行选取时,当前情况所可能达到的最大权重;
d ( i . j ) = m a x ( d ( i + 1 , j ) , d ( i + 1 , j − w [ i ] ) + v [ i ] ) ) d(i.j)=max(d(i+1,j),d(i+1,j-w[i])+v[i])) d(i.j)=max(d(i+1,j),d(i+1,jw[i])+v[i]))
从决策过程的转移来看:
d ( i + 1 , j ) d(i+1,j) d(i+1,j)代表我们在遍历到物品 i i i的时候,并不选取它,所以剩余重量就没有变,状态变为遍历 i + 1 i+1 i+1个物品;
d ( i + 1 , j − w [ i ] ) + v [ i ] d(i+1,j-w[i])+v[i] d(i+1,jw[i])+v[i]我们在遍历到物品 i i i的时候,选取它加入背包,所以剩余重量 j j j就要减去物品 i i i的重量 w [ i ] w[i] w[i], 当前可能最大权重加上物品 i i i的权重 v [ i ] v[i] v[i];

从计算的顺序过程来看:
我对刘汝佳的代码做了一点修改

for(int i = n; i >= 0; i——)
	for(int j = 0; j <= C; j++){
		if(i==n)
			d[i][j]=0;
		else
			if(j >= w[i]) 
				d[i][j]=max(d[i+1][j],d[i+1][j-w[i]]+v[i]);
}

先算的是 d ( n , j ) d(n,j) d(n,j),注意,代码里面i有n+1个,物品编号从零开始, i = n i=n i=n时,代表所有n个物品都已经遍历完但是一个都不选时的情况,初始要将其设为0;
之后从下往上遍历,所以计算的时候是先算后来的情况。

对于 j j j从0开始采取滚动数组时,如果不仅仅要求输出最大权重,也要输出最大权重时的重量的话
对于代码

memset(f, 0, sizeof(f));
for(int i = 1; i <= n; i++){
	scanf("%d%d", &V, &W);
	for(int j = C; j >= 0; j——)
		if(j >= V) f[j] = max(f[j], = f[j-V]+W);
}

会出现多个最大重量都有最大权重的情况, j &gt; m a x ( w ) j&gt;max(w) j>max(w) 时只看 f ( j ) f(j) f(j)是没有问题的;
但是想得到准确的 w w w,会混入超过的情况

所以需要

memset(f, -1, sizeof(f));
f[0]=0;

坑了我几个小时

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值