poj 3046 Ant Counting dp 优化

题目

题目链接:http://poj.org/problem?id=3046

题目来源:《挑战》练习题

简要题意: T 种编号的蚂蚁,第i个数为 Ni ,问能够构成多少种秩在 [S,B] 之间的集合有多少。

数据范围: 1T1000;1Ni100

题解

首先肯定是映射成 Ni

普通的想法是搞 dp[i][j] ,前 i 个秩为j的集合的个数。

则可以得到方程 dp[i][j]=k=max(0,jNi)jdp[i1][k]

这个方程去直接搞的话肯定是TLE的咯,想办法优化就是了。

dp[i][j] 做成前缀和就行了,前 i 个秩不超过j的集合的个数,然后区间求和去转移,方程如下:

dp[i][j]={dp[i][j1]+dp[i1][j]dp[i1][jNi1]            j>Nidp[i][j1]+dp[i1][j]                                                     else

实现

需要开滚动数组,写的时候可以对上界进行优化。

可以从小到大排个序,整体效率会变好,可以忽略 0 <script type="math/tex" id="MathJax-Element-15">0</script>个的情况。

代码

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <set>
#include <map>

#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define fi first
#define se second
using namespace std;
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
LL powmod(LL a,LL b, LL MOD) {LL res=1;a%=MOD;for(;b;b>>=1){if(b&1)res=res*a%MOD;a=a*a%MOD;}return res;}
// head
const int N = 1005;
const int M = 1E5+5;
const int MOD = 1e6;

int a[1005];
int dp[2][M];

int main()
{
    int n, m, l, r, x;
    scanf("%d%d%d%d", &n, &m, &l, &r);
    for (int i = 0; i < m; i++) {
        scanf("%d", &x);
        a[x]++;
    }

    dp[0][0] = dp[1][0] = 1;
    sort(a+1, a+n+1);
    int pre = 0, cur = 1, sum = 0;
    for (int i = 1; i <= n; i++) {
        if (!a[i]) continue;
        for (int j = 1; j <= a[i]; j++) {
            dp[pre][sum+j] = dp[pre][sum];
        }

        sum += a[i];
        for (int j = 1; j <= a[i]; j++) {
            dp[cur][j] = (dp[cur][j-1] + dp[pre][j]) % MOD;
        }
        for (int j = a[i]+1; j <= sum; j++) {
            dp[cur][j] = (dp[cur][j-1] + dp[pre][j] + MOD - dp[pre][j-a[i]-1]) % MOD;
        }
        swap(cur, pre);
    }
    printf("%d\n", (dp[pre][r] + MOD - dp[pre][l-1]) % MOD);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值