(x&y)+((x^y)>>1)用于计算两个值得平均值
x&y 得到的值是x,y共有的值
x^y 得到的值是x,y各自独有的值之和, >>1相当于除以2,即得到各自独有的值之和的平均值
(x&y)+((x^y)>>1)两个值加在一起就是x,y总的平均值
举个例子:
x = 10 二进制为1010 = 2^3 + 2^1 = 8 + 2
y = 6 二进制为0110 = 2^2 + 2^1 = 4 + 2
可以看到x,y两个值得共同值是2,x独有值是8,y独有值是4
(x + y) / 2 = (10 + 6) / 2 = [(8 + 2) + (4 + 2)] / 2 = (8 + 4) / 2 + (2 + 2) / 2 = (8 + 4) / 2 + 2
其中2 = (x & y) (8 + 4) / 2 = (x ^ y) >> 1