最小生成树—克鲁斯卡尔算法

#include <iostream>
#include <string>
using namespace std;

typedef struct Edge//边集数组
{
	int begin;//边起始下标
	int end;//边终止下标
	int weight;//边权重
}Edge;

typedef struct Graph
{
	string vertex[10];
	Edge edge[10];
	int num_vertex;
	int num_edge;
}Graph;

int get_location(Graph g, string s)
{
	int i;
	for(i=0;i<g.num_vertex;i++)
	{
		if(s == g.vertex[i])
			return i;
	}
	return -1;
}

void create_graph(Graph &g)
{
	cout<<"请输入顶点数和边数:";
	cin>>g.num_vertex>>g.num_edge;
	cout<<"请输入顶点:";
	int i,j,k;
	string s1,s2;
	for(i=0;i<g.num_vertex;i++)
		cin>>g.vertex[i];
	cout<<"请输入边及其对应的权值:"<<endl;
	for(k=0;k<g.num_edge;k++)
	{
		cin>>s1>>s2>>g.edge[k].weight;
		i = get_location(g,s1);
		j = get_location(g,s2);
		g.edge[k].begin = i;
		g.edge[k].end = j;
	}
}

int cmp(const void *a, const void *b)
{
	return ((Edge*)a)->weight - ((Edge*)b)->weight;
}

void minspantree_kruskal(Graph g)
{
	cout<<"最小生成树的边为:"<<endl;
	int i,j,n=0;
	int set[10];//存储每个顶点的father
	for(i=0;i<g.num_vertex;i++)
		set[i] = i;
	qsort(g.edge,g.num_edge,sizeof(g.edge[0]),cmp);
	for(i=0;i<g.num_vertex && n<g.num_vertex-1;i++)//n<g.num_vertex-1指最小生成树的边为顶点数减1
	{
		int p = g.edge[i].begin;
		int q = g.edge[i].end;
		if(set[p]!=set[q])//如果两个顶点的father不同,说明没有形成环路
		{
			cout<<g.vertex[p]<<"->"<<g.vertex[q]<<endl;
			n++;
			for(j=0;j<g.num_vertex;j++)
			{
				if(set[j] == set[q])//更新顶点的father
					set[j]=set[p];
			}
		}
	}
}

int main()
{
	Graph g;
	create_graph(g);
	minspantree_kruskal(g);
	return 0;
}


参考:http://blog.csdn.net/cxllyg/article/details/7604148

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值