分析
最小生成树(
MinSpanTree
)的克鲁斯卡尔(Kruskal
)算法实现主要是通过将输入的图的边存在优先队列中,然后依次从优先队列中取最小的边加入生成树,最小生成树的边的个数是顶点数减一,因此退出条件是while (!pq.empty() || cnt < n - 1)
,其中需要注意的是在定义边结点EdgeNode
时需要重载运算符<
,因为在优先队列priority_queue
中的实现逻辑就是需要比较元素的大小,那么在自定义结构体中则需要重载该运算符。
另外一个知识点就是并查集,这个数据结构的实现方式比较简单,类似于树的实现方式,具体知识可参考资料。总的来说,Kruskal算法的实现还是相对简单的。
C/C++代码实现
/*******************************************************
* Kruskal算法实现最小生成树
********************************************************/
#include<iostream>
#include<queue>
using namespace std;
const int maxn = 100;
int prev_[maxn];
int vexs[maxn];
int n;//顶点数
int m;//边数
struct EdgeNode {
int u, v;// u -> v
int weight;//边权值
/*对于常量型成员变量和引用型成员变量 此处成员变量都是普通成员变量 哪种方法初始化都行
必须通过初始化化列表的方式进行初始化
在构造函数体内进行赋值的方式是行不通的*/
EdgeNode(const int& u, const int& v, const int& weight) :u(u), v(v), weight(weight) {}//构造函数
bool operator < (const EdgeNode& en) const {
return en.weight < this->weight; //最小值优先 建立堆元素升序排列
}
};
class UnionFind {
public:
UnionFind(const int& n);
int Find(const int& p);
void Union(const int& p, const int& q);
};
UnionFind::UnionFind(const int& n)
{
for (int i = 0; i < n; i++)
{
prev_[i] = -1;//父节点初始化为-1
}
}
void UnionFind::Union(const int& p, const int& q)
{
int x = Find(p); //找到p的祖先为x
int y = Find(q); //找到q的祖先为y
if (x != y)//不属于同一组
{
prev_[y] = x; //p, q 合并到一组
}
}
int UnionFind::Find(const int& p)
{
if (prev_[p] == -1)
return p;//找到祖先
return Find(prev_[p]);
}
int LocateVertex(int v)
{
for (int i = 0; i < n; i++)
{
if (v == vexs[i])
{
return i;
}
}
return -1;
}
void MinSpanTree_Kruskal(priority_queue<EdgeNode>& pq)
{
int cnt = 0;
UnionFind UF(n);
while (!pq.empty() || cnt < n - 1)//MST的边数为 顶点数 - 1
{
EdgeNode en = pq.top();
pq.pop();
int u = LocateVertex(en.u);//定位顶点索引
int v = LocateVertex(en.v);
int x = UF.Find(u);
int y = UF.Find(v);
if (x != y) //两个顶点不属于同一组
{
UF.Union(x, y);//合并两顶点
cnt++; //加入一条边
cout << "加入边(" << vexs[u] << "," << vexs[v] << "); 边长为" << en.weight << "." << endl;
}
}
}
int main()
{
int u[maxn];//起始点
int v[maxn];//终止点
int w[maxn];//权值
cout << "请输入顶点数(n >= 2):";
cin >> n;
cout << "请输入边数(m >= n - 1):";
cin >> m;
cout << "请输入边依附的顶点及权值信息:" << endl;
for (int i = 0; i < n; i++)
{
vexs[i] = i + 1;
}
priority_queue<EdgeNode> pq;
for (int i = 0; i < m; i++)
{
cin >> u[i] >> v[i] >> w[i];
EdgeNode en(u[i], v[i], w[i]);
pq.push(en);//建立小顶堆 边按权值进行升序排列
}
MinSpanTree_Kruskal(pq);
return 0;
}
输出结果
请输入顶点数(n >= 2):6
请输入边数(m >= n - 1):10
请输入边依附的顶点及权值信息:
1 2 6
1 3 1
1 4 5
2 3 5
2 5 3
3 4 5
3 5 6
5 6 6
3 6 4
4 6 2
加入边(1,3); 边长为1.
加入边(4,6); 边长为2.
加入边(2,5); 边长为3.
加入边(3,6); 边长为4.
加入边(2,3); 边长为5.