【算法】最小生成树的Kruskal算法

本文介绍了克鲁斯卡尔算法用于找到图的最小生成树的实现过程,包括利用优先队列存储边并按权重排序,以及使用并查集避免形成环路。C/C++代码展示了算法的具体细节,如边结构体的定义、优先队列的操作以及并查集的联合与查找操作。
摘要由CSDN通过智能技术生成

分析

最小生成树(MinSpanTree)的克鲁斯卡尔(Kruskal)算法实现主要是通过将输入的图的边存在优先队列中,然后依次从优先队列中取最小的边加入生成树,最小生成树的边的个数是顶点数减一,因此退出条件是while (!pq.empty() || cnt < n - 1),其中需要注意的是在定义边结点EdgeNode时需要重载运算符<,因为在优先队列priority_queue中的实现逻辑就是需要比较元素的大小,那么在自定义结构体中则需要重载该运算符。
另外一个知识点就是并查集,这个数据结构的实现方式比较简单,类似于树的实现方式,具体知识可参考资料。总的来说,Kruskal算法的实现还是相对简单的。

C/C++代码实现

/*******************************************************
*              Kruskal算法实现最小生成树
********************************************************/
#include<iostream>
#include<queue>
using namespace std;

const int maxn = 100;
int prev_[maxn];
int vexs[maxn];
int n;//顶点数
int m;//边数


struct EdgeNode {
	int u, v;// u -> v
	int weight;//边权值
	/*对于常量型成员变量和引用型成员变量  此处成员变量都是普通成员变量 哪种方法初始化都行
	必须通过初始化化列表的方式进行初始化
	在构造函数体内进行赋值的方式是行不通的*/
	EdgeNode(const int& u, const int& v, const int& weight) :u(u), v(v), weight(weight) {}//构造函数
	bool operator < (const EdgeNode& en) const {
		return  en.weight < this->weight; //最小值优先  建立堆元素升序排列
	}
};

class UnionFind {
public:
	UnionFind(const int& n);
	int Find(const int& p);
	void Union(const int& p, const int& q);
};
UnionFind::UnionFind(const int& n)
{
	for (int i = 0; i < n; i++)
	{
		prev_[i] = -1;//父节点初始化为-1
	}
}

void UnionFind::Union(const int& p, const int& q)
{
	int x = Find(p); //找到p的祖先为x
	int y = Find(q); //找到q的祖先为y
	if (x != y)//不属于同一组
	{
		prev_[y] = x; //p, q 合并到一组
	}
}

int UnionFind::Find(const int& p)
{
	if (prev_[p]  == -1)
		return p;//找到祖先
	return Find(prev_[p]);
}

int LocateVertex(int v)
{
	for (int i = 0; i < n; i++)
	{
		if (v == vexs[i])
		{
			return i;
		}
	}
	return -1;
}

void MinSpanTree_Kruskal(priority_queue<EdgeNode>& pq)
{
	int cnt = 0;
	UnionFind UF(n);
	while (!pq.empty() || cnt < n - 1)//MST的边数为 顶点数 - 1
	{

		EdgeNode en = pq.top();
		pq.pop();

		int u = LocateVertex(en.u);//定位顶点索引
		int v = LocateVertex(en.v);

		int x = UF.Find(u);
		int y = UF.Find(v);
	
		if (x != y) //两个顶点不属于同一组
		{
			UF.Union(x, y);//合并两顶点
			cnt++; //加入一条边
			cout << "加入边(" << vexs[u] << "," << vexs[v] << "); 边长为" << en.weight << "." << endl;
		}
	}
}

int main()
{
	int u[maxn];//起始点
	int v[maxn];//终止点
	int w[maxn];//权值
	cout << "请输入顶点数(n >= 2):";
	cin >> n;
	cout << "请输入边数(m >= n - 1):";
	cin >> m;
	cout << "请输入边依附的顶点及权值信息:" << endl;

	for (int i = 0; i < n; i++)
	{
		vexs[i] = i + 1;
	}
	priority_queue<EdgeNode> pq;
	for (int i = 0; i < m; i++)
	{
		cin >> u[i] >> v[i] >> w[i];
		EdgeNode en(u[i], v[i], w[i]);
		pq.push(en);//建立小顶堆 边按权值进行升序排列
	}

	MinSpanTree_Kruskal(pq);

	return 0;
}

输出结果

请输入顶点数(n >= 2):6
请输入边数(m >= n - 1):10
请输入边依附的顶点及权值信息:
1 2 6
1 3 1
1 4 5
2 3 5
2 5 3
3 4 5
3 5 6
5 6 6
3 6 4
4 6 2
加入边(1,3); 边长为1.
加入边(4,6); 边长为2.
加入边(2,5); 边长为3.
加入边(3,6); 边长为4.
加入边(2,3); 边长为5.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值