介绍
神经网络的中心思想是将输入向量的线性组合作为衍生特征,然后使用非线性函数对衍生向量进行拟合。
Projection Pursuit Regression
国内把PPR译作投影寻踪函数。大致理解就是回归函数将
p
元向量映射为一元变量。这种方法先将
- 输入向量X,X∈Rp ;
- wm,m=1,2,...,M , wm 是p维单位向量
the Projection Pursuit Regression Model(PPR)如下:
f(X)=∑m=1Mgm(wTmX)
这是一个加性模型,我们将衍生出来的参数记作 Vm=wTX ,可以看到输入由 p 维向量
优点
如果
M
的个数足够大,
缺点
通过变换后输入 X 进入模型的途径多样,难以对产生的模型进行合理的解释。
训练PPR模型
给定训练数据
损失函数如下:
∑i=1N[yi−∑m=1Mgm(wTmxi)]2
下面以 M=1 为例来解释:
- 给定方向向量
w
,则
vi=wTxi 。这个问题就变成了一维的光滑问题,可以使用光滑样条函数来拟合求 g 。 - 给定
g ,我们的任务是通过调整 w 来最小化误差函数。
高斯牛顿迭代法:
∑i=1N[yi−g(wTxi)]2≈∑i=1Ng′(wToldxi)2[(wToldx1+yi−g(woldTxi)g′(wToldxi))−wTxi]2