Projectioni Pursuit Regression

本文介绍了投影寻踪回归(PPR)的基本原理及其数学模型。PPR是一种将高维输入向量转换为一维变量进行回归的方法。文章详细阐述了PPR模型的构造过程,并讨论了其优缺点。
摘要由CSDN通过智能技术生成

介绍

神经网络的中心思想是将输入向量的线性组合作为衍生特征,然后使用非线性函数对衍生向量进行拟合

Projection Pursuit Regression

国内把PPR译作投影寻踪函数。大致理解就是回归函数将 p 元向量映射为一元变量。这种方法先将 p 维输入向量转化成一元变量,再对一元变量进行回归。

  • XXRp
  • wm,m=1,2,...,M wm 是p维单位向量

the Projection Pursuit Regression Model(PPR)如下:

f(X)=m=1Mgm(wTmX)

这是一个加性模型,我们将衍生出来的参数记作 Vm=wTX ,可以看到输入由 p 维向量 X 转变为一个标量 V gm(wTmX) 称为岭函数(ridge function),它只在 wm 的方向上变化。标量 Vm=wTmX 实际是将向量 X 投影到wm的方向上。我们的任务就是寻找投影方向 wm 来使估计误差最小。

优点

如果 M 的个数足够大,gm选择合适, PPR 模型可以足够好地拟合 Rp 空间里任意连续函数。

缺点

通过变换后输入 X 进入模型的途径多样,难以对产生的模型进行合理的解释。

训练PPR模型

给定训练数据(xi,yi),i=1,2,...,N。要训练求出函数 gm 和方向向量 wmm=1,2,...,M

损失函数如下:

i=1N[yim=1Mgm(wTmxi)]2

下面以 M=1 为例来解释:

  • 给定方向向量 w ,则vi=wTxi。这个问题就变成了一维的光滑问题,可以使用光滑样条函数来拟合求 g
  • 给定 g,我们的任务是通过调整 w 来最小化误差函数。

高斯牛顿迭代法:

g(wTxi)g(wToldxi)+g(wToldxi)(wwold)Txi

i=1N[yig(wTxi)]2i=1Ng(wToldxi)2[(wToldx1+yig(woldTxi)g(wToldxi))wTxi]2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值