描述
有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。
-
输入
-
第一行输入一个正整数N表示共有n次测试数据。
每一组测试数据的第一行有三个整数n,w,h,n表示共有n个喷水装置,w表示草坪的横向长度,h表示草坪的纵向长度。
随后的n行,都有两个整数xi和ri,xi表示第i个喷水装置的的横坐标(最左边为0),ri表示该喷水装置能覆盖的圆的半径。
输出
-
每组测试数据输出一个正整数,表示共需要多少个喷水装置,每个输出单独占一行。
如果不存在一种能够把整个草坪湿润的方案,请输出0。
样例输入
-
2 2 8 6 1 1 4 5 2 10 6 4 5 6 5
样例输出
-
1
2
-
本题和(一)类似不同的是固定,将题目解读后可以看成区间覆盖,每个水龙头在边界的覆盖位置有最左边和最右边,要求是完全覆盖0到w取最少的喷水装置
-
-
-
#include<stdio.h> #include<functional> #include<vector> #include<queue> #include<math.h> #include<algorithm> #include<iostream> using namespace std; struct qj { double la,lb; }; double cmp(qj a,qj b) { return a.la<b.la; } int main() { int N; scanf("%d",&N); while(N--) { int n; double w,h; scanf("%d %lf %lf",&n,&w,&h); int i,j; h=h/2; qj a[10101]; for(i=0;i<n;i++) { double x,r; scanf("%lf %lf",&x,&r); if(r>h) { a[i].la=x-sqrt(r*r-h*h);//找到覆盖的最左边 a[i].lb=x+sqrt(r*r-h*h);//找到覆盖的最右边 if(a[i].la<0)//判断是否越界 a[i].la=0; if(a[i].lb>w) a[i].lb=w; } else a[i].la=a[i].lb=x; } sort(a,a+n,cmp); double t=0;//表示现在的最右边所在位置 int s=0; while(t<w) { double ma=0; for(i=0;i<n&&a[i].la<=t;i++)//找到和前面相连并且伸出去最长的 { ma=max(ma,a[i].lb-t); } if(ma!=0) { t=t+ma; s++; } else break; } if(t==w) printf("%d\n",s); else printf("0\n"); } return 0; }