喷水装置(二)

描述
有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。
输入
第一行输入一个正整数N表示共有n次测试数据。
每一组测试数据的第一行有三个整数n,w,h,n表示共有n个喷水装置,w表示草坪的横向长度,h表示草坪的纵向长度。
随后的n行,都有两个整数xi和ri,xi表示第i个喷水装置的的横坐标(最左边为0),ri表示该喷水装置能覆盖的圆的半径。
输出
每组测试数据输出一个正整数,表示共需要多少个喷水装置,每个输出单独占一行。
如果不存在一种能够把整个草坪湿润的方案,请输出0。
样例输入
2
2 8 6
1 1
4 5
2 10 6
4 5
6 5
样例输出
1

2

本题和(一)类似不同的是固定,将题目解读后可以看成区间覆盖,每个水龙头在边界的覆盖位置有最左边和最右边,要求是完全覆盖0到w取最少的喷水装置



#include<stdio.h>
#include<functional>
#include<vector>
#include<queue>
#include<math.h>
#include<algorithm>
#include<iostream>
using namespace std;
struct qj
{
    double la,lb;
};
double cmp(qj a,qj b)
{
    return a.la<b.la;
}
int main()
{
    int N;
    scanf("%d",&N);
    while(N--)
    {
        int n;
        double w,h;
        scanf("%d %lf %lf",&n,&w,&h);
        int i,j;
        h=h/2;
        qj a[10101];
        for(i=0;i<n;i++)
        {
            double x,r;
            scanf("%lf %lf",&x,&r);
            if(r>h)
            {
                 a[i].la=x-sqrt(r*r-h*h);//找到覆盖的最左边
                 a[i].lb=x+sqrt(r*r-h*h);//找到覆盖的最右边
                 if(a[i].la<0)//判断是否越界
                    a[i].la=0;
                 if(a[i].lb>w)
                    a[i].lb=w;
            }
            else
                a[i].la=a[i].lb=x;
        }

        sort(a,a+n,cmp);
        double t=0;//表示现在的最右边所在位置
        int s=0;
        while(t<w)
        {
            double ma=0;
            for(i=0;i<n&&a[i].la<=t;i++)//找到和前面相连并且伸出去最长的
            {
                ma=max(ma,a[i].lb-t);
            }
            if(ma!=0)
            {
                t=t+ma;
                s++;
            }
            else
             break;
        }
        if(t==w)
            printf("%d\n",s);
        else
            printf("0\n");
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值