文章目录
前文回顾:
《Mycat分布式数据库架构》之原理及架构
《Mycat分布式数据库架构》之搭建详解
《Mycat分布式数据库架构》之配置详解
《Mycat分布式数据库架构》之数据切分和读写分离
《Mycat分布式数据库架构》之故障切换
《Mycat分布式数据库架构》之数据切分实战
《Mycat分布式数据库架构》之全局自增ID
前面的文章由于我们进行了数据的水平切分,对于员工表EMPLOYEES和部门表DEPARTMENTS来说,部门ID是员工表的外键,我们只对EMPLOYEES表进行了切分,所以对于一些数据节点来说是没有部门表的,关联查询就会出问题,所以我们需要将互相依赖的表能够按照同一规则切分到相同的节点上,避免跨库Join关联查询,这里我们就需要采用mycat 的ER分片。
员工表和部门表我们可以抽象出是父子关系的表,员工表依赖于部门表,所以对这两个表进行ER分片,子表的记录与所关联的父表记录存放在同一个数据分片上,避免跨库join操作。
如下,在schema.xml中定义如下分片配置。
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<schema name="mycats" checkSQLschema="false" sqlMaxLimit="100">
<table name="DEPARTMENTS" primaryKey="DEPARTMENT_ID" dataNode="datanode01,datanode02" rule="EMPLOYEES" autoIncrement="true">
<childTable name="EMPLOYEES" primaryKey="EMPLOYEE_ID" joinKey="DEPARTMENT_ID" parentKey="DEPARTMENT_ID" autoIncrement="true"/>
</table>
</schema>
<dataNode name="datanode01" dataHost="host01" database="human_res" />
<dataNode name="datanode02" dataHost="host02" database="hr" />
<dataHost name="host01" maxCon="1000" minCon="10" balance="1" writeType="0" dbType="oracle" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<!--心跳sql-->
<heartbeat>select 1 from dual</heartbeat>
<writeHost host="192.168.157.130" url="jdbc:oracle:thin:@192.168.157.130:1521:human_res" user="human" password="human">
</writeHost>
</dataHost>
<dataHost name="host02" maxCon="1000" minCon="10" balance="1" writeType="0" dbType="oracle" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<!--心跳sql-->
<heartbeat>select 1 from dual</heartbeat>
<writeHost host="192.168.157.129" url="jdbc:oracle:thin:@192.168.157.129:1521:hr" user="human" password="human">
</writeHost>
</dataHost>
</mycat:schema>
这里将部门表作为父表,使用childTable指定员工表为字表,其中,joinKey就是关联键,员工表和部门表使用DEPARTMENT_ID关联。parentKey就是父表主键。如此配置,两张表将按统一规则的进行分片。
由于DEPARTMENT表ID也是自增主键,所以这里同样需要使用mycat全局自增ID,根据前文方法同样创建即可。
下面我们通过mycat向两张表中插入一些数据。首先是部门表,如下:
然后是员工表,如下:
其中,第一个节点192.168.157.130中EMPLOYEES表和DEPARTMENTS表的数据如下所示,
第二个数据节点192.168.157.129中EMPLOYEES表和DEPARTMENTS表数据如下所示:
可以看到,两个表将相同规则关联的数据存放到了同一个节点中,这样查询时避免了跨库join操作。
更多技术干货,请持续关注程序员大佬超。
原创不易,转载请注明出处。