hdu3415

求最大的连续不超过k的子序列的和。

用单调队列维护。

先求出s[1..i]的和,将前k个添加到n的结尾就相当于有循环和了。

那么对于某个sj,他的最大的序列和为s[j] - s[i],其中  j - k - 1 <= i <= j - 1.

那么用单调队列去维护i,可以在O(1)的时间去求出s[i]。

今后有任何优化问题需要减去前面最小或者加上最大和的都可以使用单调队列去维护。

AC代码:

#include <cstdio>
#include <cstring>


const int MAX_NUMBER = 1000006;
const int INF = 2000000007;

int sums[2 * MAX_NUMBER];
int value[MAX_NUMBER];
int queue[2 * MAX_NUMBER];

int main() {

    int test_case;
    scanf("%d", &test_case);
    while (test_case--) {
        int n, length, head, tail, max_number, max_length, start, end;
        scanf("%d%d", &n, &length);
        sums[0] = 0;
        head = tail = 1;
        queue[head] = 0;
        max_number = -INF;
        start = end = MAX_NUMBER;
        max_length = MAX_NUMBER;
        for (int i = 1; i <= n; i++) {
            scanf("%d", &value[i]);
            sums[i] = sums[i - 1] + value[i];
        }
        for (int i = n + 1; i <= n + length - 1; i++) {
            sums[i] = sums[i - 1] + value[i % n];
        }
        for (int i = 1; i <= n + length - 1; i++) {
            while (tail >= head && i - queue[head] > length) {
                head++;
            }
            int temp = sums[i] - sums[queue[head]];
            if (temp >= max_number) {
                if (temp > max_number) {
                    max_number = temp;
                    max_length = i - queue[head];
                    start = queue[head] + 1;
                    end = i;
                }
                else {
                    if (queue[head] + 1 < start) {
                        max_length = i - queue[head];
                        start = queue[head] + 1;
                        end = i;
                    }
                    else if (queue[head] + 1 == start) {
                        if (max_length > i - queue[head]) {
                            max_length = i - queue[head];
                            start = queue[head] + 1;
                            end = i;
                        }
                    }
                }
            }
            while (tail >= head && sums[queue[tail]] > sums[i]) {
                tail--;
            }
            queue[++tail] = i;
        }
        if (end > n) {
            end -= n;
        }
        printf("%d %d %d\n", max_number, start, end);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值