微服务保护
初始Sentinel
雪崩问题
微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩。
解决雪崩问题的常用方式有四种:
- 超时处理:设定超时时间,请求超过一定时间没有响应就返回错误,不会无休止等待。
- 舱壁模式:限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。
- 熔断降级:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。
- 流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。
服务保护技术对比
认识Sentinel
官网:https://sentinelguard.io/zh-cn/
Sentinel具有以下特征:
- 丰富的应用场景: Sentinel承接了阿里近10年的双十一大促流量的核心场景,例如秒杀、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
- 完备的实时监控: Sentinel同时提供实时的监控功能。可以在控制台中看到接入应用的单台机器秒级数据,甚至500台以下规模的集群的汇总运行情况。
- 广泛的开源生态: Sentinel提供开箱即用的与其它开源框架/库的整合模块,例如与Spring Cloud、Dubbo、gRPC的整合。只需要引入相应的依赖并进行简单的配置即可快速地接入Sentinel。
- 完善的SPI扩展点: Sentinel提供简单易用、完善的SPI扩展接口。可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。
安装Sentinel控制台
- 官网下载jar包:https://github.com/alibaba/Sentinel/releases
- 拷贝到非中文路径下:
java -jar sentinel-dashboard-1.8.1.jar
- 然后访问localhost:8080,账号密码都为sentinel
如果要修改Sentinel的默认端口、账号、密码、可以通过以下配置:
微服务整合Sentinel
- 引入依赖
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
- 配置控制台地址
spring:
cloud:
sentinel:
transport:
dashboard: localhost:8080
- 访问微服务的任意端点,出发sentinel监控
限流规则
簇点链路
簇点链路:就是项目内的调用链路,链路中被监控的每个接口就是一个资源。默认情况下sentinel会监控SpringMVC的每一个端点,因此SpringMVC的每一个端点就是调用链路中的一个资源。
流控、熔断等都是针对簇点链路中的资源来设置的, 因此我们可以点击对于资源后面的按钮来设置规则:
快速入门
点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。表单中可以添加流控规则,如:
其含义是限制/order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。
案例:流控规则入门案例
需求:给/order/{orderId}这个资源设置流控规则,QPS不能超过5。
使用apipost测试:
在控制台查看
流控模式
在添加限流规则时,点击高级选项,可以选择三种流控模式:
- 直接:统计当前资源的请求,出发阈值时对当前资源直接限流,也是默认的模式
- 关联:统计与当前资源相关的另一资源,触发阈值时,对当前资源限流
- 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流
流控模式-关联
- 关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
- 使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是有限支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。
当/write资源访问触发阈值时,就会对/read资源限流,避免影响/write资源。
案例:流控模式-关联
需求:
- 在OrderController新建两个端点:/order/query和/order/update,无需实现业务
@GetMapping("query")
public String query() {
// 根据id查询订单并返回
return "xc";
}
@GetMapping("update")
public String update() {
// 根据id查询订单并返回
return "xc";
}
- 配置流控规则,当/order/update资源被访问QPS超过5时,对/order/query请求限流
请求update
访问query
满足下面条件可以使用关联模式:
- 两个有竞争关系的资源
- 一个优先级较高,一个优先级较低
流控模式-链路
链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。
例如有两条请求链路:
- /test1 --> /common
- /test2 --> /common
如果只希望统计从/test2进入到/common的请求,则可以这样配置:
案例:流控模式-链路
需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。
- 在OrderService中添加一个queryGoods方法,不需要实现业务。
public String queryGoods() {
return "xc";
}
- 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法
- 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法
@GetMapping("query")
public String query() {
return orderService.queryGoods();
}
@GetMapping("save")
public String save() {
return orderService.queryGoods();
}
-
给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2
-
- Sentinel默认只标记Controller中的方法为资源,如果要标记其它方法,需要利用@SentinelResource注解
@SentinelResource
public String queryGoods() {
return "xc";
}
-
- Sentinel默认会将Controller方法做context整合,导致链路模式失效,需要修改application.yml,添加配置:
spring:
cloud:
sentinel:
web-context-unify: false # 关闭context整合
从query访问:
从save访问:
流控效果
流控效果是指请求达到流控阈值时采取的措施,包括三种:
- 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。这是默认的处理方式。
- warm up:预热模式,对超出阈值的请求同样时拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大值。
- 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长
流控效果-warm up
warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值时threshold/clodFactor,持续指定时长后,逐渐提高到threshold值。而coldFactor的默认值是3
例如,我设置QPS的threshold为10,预热时间为5秒,那么初始化阈值就是10/3,也就是3,然后在5秒后逐渐增长到10
案例:流控效果-warm up
需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒
流控效果-排队等待
当请求超过QPS阈值时,快速失败和warm up会拒绝新的请求并抛出异常。而排队等待则让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。
例如:QPS=5,意味着每200ms处理一个队列中的请求;timeout=2000,意味着预期等待超过2000ms的请求会被拒绝并抛出异常
案例:流控效果-排队等待
需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队流控效果,超时时长设置为5s
测试结果
热点参数限流
在热点参数限流的高级选项中,可以对部分参数设置例外配置:
结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:
- 如果参数值是100,则每1秒允许的QPS为10
- 如果参数值是101,则每1秒允许的QPS为15
案例:热点参数限流
给/order/{orderId}这个资源添加热点参数限流,规则如下:
**注意:**热点参数限流对默认的SpringMVC资源无效,需要通过注解配置的才有效
@SentinelResource("hot")
@GetMapping("{orderId}")
public Order queryOrderByUserId(@PathVariable("orderId") Long orderId) {
// 根据id查询订单并返回
return orderService.queryOrderById(orderId);
}
- 默认的热点参数规则是每1秒请求量不超过2
- 给102这个参数设置例外:每1秒请求量不超过4
- 给103这个参数设置例外:每1秒请求量不超过10
对于默认值:
对于102:
对于103:
隔离和降级
隔离和降级
虽然限流可以尽量避免因高并发引起服务故障,当服务还会因其它原因而故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。
不管是线程隔离还是熔断降级,都是对客户端的保护
Feign整合Sentinel
SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。
1.修改OrderService的application.yml文件,开启Feign的Sentinel功能
feign:
sentinel:
enabled: true # 开启Feign的Sentinel功能
2.给FeignClient编写失败后的降级逻辑
- 方式一:FallbackClass,无法对远程调用的异常做处理
- 方式二:FallbackFactory,可以对远程调用的异常做处理。(√)
package cn.itcast.order.clients.fallback;
import cn.itcast.order.clients.UserClient;
import cn.itcast.order.pojo.User;
import feign.hystrix.FallbackFactory;
import lombok.extern.slf4j.Slf4j;
/**
* @author xc
* @date 2023/5/14 20:03
*/
@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {
@Override
public UserClient create(Throwable throwable) {
return new UserClient() {
@Override
public User findById(Long id) {
log.error("查询用户异常", throwable);
return new User();
}
};
}
}
将该工厂注册成Spring管理的Bean
@Bean
public UserClientFallbackFactory userClientFallbackFactory(){
return new UserClientFallbackFactory();
}
在Sentinel控制台能看到
线程隔离
线程隔离有两种方式实现:
- 线程池隔离
- 信号量隔离(Sentinel默认采用)
两者对比:
舱壁模式
在添加限流规则时,可以选择两种阈值类型:
- QPS:就是每秒的请求数,在快速入门中已经演示过了
- 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现舱壁模式
案例:
需求:给UserClient的查询用户接口设置流控规则,线程数不能超过2。
降级熔断
熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行该服务的请求。
熔断策略-慢调用
断路器熔断策略有三种:慢调用、异常比例、异常数
- 慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。例如:
解读:RT超过500ms的调用是慢调用,统计最近1000ms内的请求,如果请求量超过5次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5s。然后进入half-open状态,放行一次请求做测试。
案例
需求:给UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5
@GetMapping("/{id}")
public User queryById(@PathVariable("id") Long id,@RequestHeader(value = "Truth",required = false) String truth) throws InterruptedException {
System.out.println(truth);
if (id == 1) {
Thread.sleep(60);
}
return userService.queryById(id);
}
熔断策略-异常比例、异常数
断路器策略有三种:慢调用、异常比例或异常数
- 异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常比例到设定的比例阈值,则触发熔断。
异常数
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。
案例:异常比例
需求:给UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s
@GetMapping("/{id}")
public User queryById(@PathVariable("id") Long id,@RequestHeader(value = "Truth",required = false) String truth) throws InterruptedException {
System.out.println(truth);
if (id == 1) {
Thread.sleep(60);
} else if (id == 2) {
throw new RuntimeException("故意抛出异常");
}
return userService.queryById(id);
}
快速刷新102后,再调用103
授权规则
授权规则
授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。
- 白名单:来源在白名单内调用者允许访问
- 黑名单:来源在黑名单的调用者不允许访问
例如,我们呢限定只允许网关来的请求访问order-service,那么流控应用中就填写网关名称
Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源。
package cn.itcast.order.sentinel;
import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.RequestOriginParser;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
import javax.servlet.http.HttpServletRequest;
/**
* @author xc
* @date 2023/5/14 21:30
*/
@Component
public class HeaderOriginParser implements RequestOriginParser {
@Override
public String parseOrigin(HttpServletRequest request) {
// 1.获取请求头
String origin = request.getHeader("origin");
// 2.非空判读
if (StringUtils.isEmpty(origin)) {
origin = "blank";
}
return origin;
}
}
配置网关过滤器
default-filters:
- AddRequestHeader=origin,gateway
直接访问微服务:
通过网关访问:
自定义异常结果
默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。如果自定义异常时的返回结果,需要实现BlockExceptionHandler接口
而BlockException包含很多子类,分别对应不同的场景:
我们在order-service中定义类,实现BlockExceptionHandler接口:
package cn.itcast.order.sentinel;
import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.BlockExceptionHandler;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import com.alibaba.csp.sentinel.slots.block.authority.AuthorityException;
import com.alibaba.csp.sentinel.slots.block.degrade.DegradeException;
import com.alibaba.csp.sentinel.slots.block.flow.FlowException;
import com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowException;
import org.springframework.stereotype.Component;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
/**
* @author xc
* @date 2023/5/14 21:43
*/
@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
@Override
public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
String msg = "未知异常";
int status = 429;
if (e instanceof FlowException) {
msg = "请求被限流了";
} else if (e instanceof ParamFlowException) {
msg ="请求被降级了";
} else if (e instanceof DegradeException) {
msg = "没有权限访问";
} else if (e instanceof AuthorityException) {
msg = "没有权限访问";
status = 401;
}
response.setContentType("application/json;charset=utf-8");
response.setStatus(status);
response.getWriter().println("{\"msg\":"+msg+", \"status\":" + status+"}");
}
}
规则持久化
规则管理模式
Sentinel的控制台规则管理由三种模式:
- 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
- pull模式
- push模式
规则管理模式-pull模式
pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。
规则管理模式-push模式
push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。
实现push模式
push模式实现最为复杂,依赖于nacos,并且需要修改Sentinel控制台源码。
Sentinel 规则持久化
一、修改order-service服务
修改OrderService,让其监听Nacos中的sentinel规则配置。
具体步骤如下:
1.引入依赖
在order-service中引入sentinel监听nacos的依赖:
<dependency>
<groupId>com.alibaba.csp</groupId>
<artifactId>sentinel-datasource-nacos</artifactId>
</dependency>
2.配置nacos地址
在order-service中的application.yml文件配置nacos地址及监听的配置信息:
spring:
cloud:
sentinel:
datasource:
flow:
nacos:
server-addr: localhost:8848 # nacos地址
dataId: orderservice-flow-rules
groupId: SENTINEL_GROUP
rule-type: flow # 还可以是:degrade、authority、param-flow
二、修改sentinel-dashboard源码
SentinelDashboard默认不支持nacos的持久化,需要修改源码。
1. 解压
解压课前资料中的sentinel源码包:
然后并用IDEA打开这个项目,结构如下:
2. 修改nacos依赖
在sentinel-dashboard源码的pom文件中,nacos的依赖默认的scope是test,只能在测试时使用,这里要去除:
将sentinel-datasource-nacos依赖的scope去掉:
<dependency>
<groupId>com.alibaba.csp</groupId>
<artifactId>sentinel-datasource-nacos</artifactId>
</dependency>
3. 添加nacos支持
在sentinel-dashboard的test包下,已经编写了对nacos的支持,我们需要将其拷贝到main下。
4. 修改nacos地址
然后,还需要修改测试代码中的NacosConfig类:
修改其中的nacos地址,让其读取application.properties中的配置:
在sentinel-dashboard的application.properties中添加nacos地址配置:
nacos.addr=localhost:8848
5. 配置nacos数据源
另外,还需要修改com.alibaba.csp.sentinel.dashboard.controller.v2包下的FlowControllerV2类:
让我们添加的Nacos数据源生效:
6. 修改前端页面
接下来,还要修改前端页面,添加一个支持nacos的菜单。
修改src/main/webapp/resources/app/scripts/directives/sidebar/目录下的sidebar.html文件:
将其中的这部分注释打开:
修改其中的文本:
7. 重新编译、打包项目
运行IDEA中的maven插件,编译和打包修改好的Sentinel-Dashboard:
8.启动
启动方式跟官方一样:
java -jar sentinel-dashboard.jar
如果要修改nacos地址,需要添加参数:
java -jar -Dnacos.addr=localhost:8848 sentinel-dashboard.jar