class Solution:
def subarraySum(self, nums: List[int], k: int) -> int:
s = 0; res = 0
# # 哨兵,起始边界条件
d = defaultdict(int); d[0] = 1
for num in nums:
s += num
res += d[s-k]
d[s] += 1
return res
# 一维前缀和
# 前缀和 + hash表
# s[i] = s[i-1] + num[i]
# 找使 s[i] - s[j] == k 的 j 的个数
# hash表记录前缀和出现的次数
# 时间复杂度:O(n),其中 n 为数组的长度。我们遍历数组的时间复杂度为 O(n),
七. 前缀和/前缀树/差分
于 2022-07-09 10:30:17 首次发布
本文探讨了在数组问题中前缀和的概念,包括如何利用前缀和解决和为K的子数组问题,并介绍了前缀树(Trie)在路径总和和字符串搜索中的应用。此外,还提到了寻找0和1数量相等的子数组以及求解最大异或值的方法。
摘要由CSDN通过智能技术生成