数据挖掘
XD1998
但行好事 莫问前程
展开
-
【数据挖掘】挖掘建模-回归分析(1)
参考文献:《Python数据分析与挖掘实战》分类与预测一、实现过程分类:构造分类模型,输入样本的属性值,输出对应的类别,将每个样本映射到预先定义好的类别。属于有监督的学习。预测:建立两种或两种以上变量间相互依赖的函数模型,然后进行预测或控制。分类实现过程:学习:通过归纳分析训练样本集来建立分类模型得到分类规则。分类:用已知的测试样本集评估分类规则的准确率,若结果可接受则用样本集...原创 2020-03-07 17:03:18 · 2011 阅读 · 0 评论 -
【数据挖掘】数据预处理
参考文献:《Python数据分析与挖掘实战》数据清洗数据清洗:删除数据集中无关数据,重复数据,平滑噪声数据,筛选掉与挖掘主题无关的数据,处理缺失值和异常值。缺失值处理:删除记录、数据插补。插补方法方法描述均值/中位数/众数插补按照属性值的类型取值使用固定值用常量替换最近临插补用缺失样本最接近的样本的属性值回归方法建立拟合模型预测缺失的属...原创 2020-03-07 12:06:57 · 506 阅读 · 0 评论 -
【数据挖掘】数据挖掘和数据分析基础
数据挖掘建模过程定义挖掘目标:理解任务,确定指标数据采样:注意数据的完整性和有效性数据探索:异常值分析、缺失值分析、相关性分析、周期性分析数据预处理:数据筛选、数据变量转换、缺失值处理、坏数据处理、数据标准化、主成分分析、属性选择、数据规约挖掘建模:所属问题分析(分类、聚类、关联规则、时序模式、智能推荐),选用算法模型评价:应用模型对应的评价方法,根据业务对模型进行解释和应用数据...原创 2020-03-06 16:14:41 · 589 阅读 · 0 评论